首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four histidine auxotrophs of Bradyrhizobium japonicum strain USDA 122 were isolated by random transposon Tn5 mutagenesis. These mutants arose from different, single transposition events as shown by the comparison of EcoRI and XhoI-generated Tn5 flanking sequences of genomic DNA. The mutants grew on minimal medium supplemented with l-histidine or l-histidinol but failed to grow with l-histidinol phosphate. While two of the muants were symbiotically defective and did not form nodules on Glycine max cvs. Lee and Peking and on Glycine soja, the other two mutants were symbiotically competent. Reversion to prototrophy occurred at a frequency of about 10-7 on growth medium without added antibiotics, but prototrophs could not be isolated from growth medium containing 200 g/ml kanamycin and streptomycin. The prototrophic revertants formed nodules on all the soybean cultivars examined. When histidine was supplied to the plant growth medium, both nodulation deficient mutants formed effective symbioses. On histidine unamended plants, nodules were observed infrequently. Three classes of bacterial colonies were isolated from such infrequent nodules: class 1 were kanamycin resistant-auxotrophs; class 2 were kanamycin sensitive-prototrophs; and class 3 were kanamycin-sensitive auxotrophs. Our results suggest that two Tn5 insertion mutations in B. japonicum leading to histidine auxotrophy, affect nodulation in some way. These mutations are in regions that show no homology to the Rhizobium meliloti common nodulation genes.  相似文献   

2.
Hopanoid lipids have been discovered recently in a number of nitrogen-fixing soil bacteria and in Bradyrhizobium bacteria which fix nitrogen in association with legume plants. We report here an investigation of the hopanoid content in an additional number of soil bacteria capable of living in close association with plants. Of the strains investigated, hopanoids were discovered in phototrophic, nitrogen-fixing bacteria and in an extended number of Bradyrhizobium strains. Strains in which hopanoids so far have not been found belong to the following genera: Rhizobium, Sinorhizobium, Phyllobacterium, Agrobacterium, and Azoarcus. To address the function of hopanoids in Bradyrhizobium, we cloned the gene coding for a key enzyme of hopanoid biosynthesis, the squalene-hopene cyclase, and expressed the gene in E. coli. The recombinant enzyme catalyzed in vitro the cyclization of squalene to hopanoid derivatives.Abbreviations SHC squalene-hopene cyclase - shc squalene-hopene cyclase gene  相似文献   

3.
The effect that resistance to 5-methyltryptophan (MT) has on the symbiotic properties of B. japonicum was examined in a survey of fourteen clones. Resistance to MT often involves a mutational alteration in the regulation of tryptophan biosynthesis.Resistant clones (MTR) were isolated from agar plates containing MT. In the selection process care was taken to avoid pigmented clones that are likely to accumulate large amounts of indole compounds or show increased tryptophan catabolism. Wild-type control clones (WTc) were isolated from plates containing no selective agent. In greenhouse studies. Tracy-M soybean plants were inoculated with the two types of clones. After six weeks, plants which were inoculated with the MT resistant clones showed a much greater range of symbiotic effectiveness than did plants that received the control clones.While most MT-resistant clones were poor symbionts or unchanged in their symbiotic performance, one clone was obtained that had significantly improved symbiotic properties. The procedure may offer a way of selecting for clones with improved symbiotic performance. These results also indicate a link between tryptophan biosynthesis and symbiotic effectiveness.  相似文献   

4.
It has been established that the hydrogenase from autotrophically cultured Bradyrhizobium japonicum contains selenium as a bound constituent. About 80% of the enzyme selenium remains bound during precipitation with 5% trichloroacetic acid (TCA). However, 85% of the selenium bound to the enzyme is released by a combined treatment of urea, heat and TCA. Neither selenomethionine nor selenocysteine could be detected on analysis of anaerobically hydrolyzed enzyme. These results are consistent with the report showing that the structural genes for this enzyme do not contain a TGA codon (Sayavedra-Soto et al. 1988) which has been reported to code for selenocysteine incorporation into several proteins (Chambers et al. 1986; Zinoni et al. 1986; Stadtman 1987). We have demonstrated that 75Se from the labeled hydrolyzed enzyme forms the derivative' selenodicysteine. The form of selenium resulting in the synthesis of this derivative apparently is SeO inf3 sup= or a compound such as Se= which is easily oxidized to SeO inf3 sup= . In a separate approach it was established that 12–16% of the total 75Se in the native enzyme reacted with 2,3-diaminonaphthalene indicating that this fraction was present as SeO inf3 sup= . The remaining 75Se was bound to the enzyme protein. From this research, we concluded that Se in Bradyrhizobium japonicum hydrogenase is present in a labile bound form. In this respect, this enzyme is similar to xanthine dehydrogenase and nicotinic acid hydroxylase, both of which contain labile Se constituents that have not been defined.Technical paper no. 8980 from the Oregon Agricultural Experiment Station  相似文献   

5.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

6.
Four local rhizobia isolates selected after two screening experiments and five USDA Bradyrhizobium japonicum strains were estimated for N2 fixation in soybean using the 15N isotope dilution technique. Strain USDA 110 was superior to the local isolates in nodulation and N2 fixation when inoculated onto soybean cv TGX 1497-ID in a Nigerian soil and could therefore be used as an inoculant for enhanced N2 fixation in soybean in Nigeria.  相似文献   

7.
Summary Two strains of the soybean endosymbiont Bradyrhizobium japonicum, USDA 110 and 61 A101 C, were mutagenized with transposon Tn5. After plant infection tests of a total of 6,926 kanamycin and streptomycin resistant transconjugants, 25 mutants were identified that are defective in nodule formation (Nod-) or nitrogen fixation (Fix-). Seven Nod- mutants were isolated from strain USDA 110 and from strain 61 A101 C, 4 Nod- mutants and 14 Fix- mutants were identified. Subsequent auxotrophic tests on these symbiotically defective mutants identified 4 His- Nod- mutants of USDA 110. Genomic Southern analysis of the 25 mutants revealed that each of them carried a single copy of Tn5 integrated in the genome. Three 61 A101 C Fix- mutants were found to have vector DNA co-integrated along with Tn5 in the genome. Two independent DNA regions flanking Tn5 were cloned from the three nonauxotrophic Nod- mutants and one His-Nod- mutant of USDA 110. Homogenotization of the cloned fragments into wild-type strain USDA 110 and subsequent nodulation assay of the resulting homogenotes confirmed that the Tn5 insertion was responsible for the Nod- phenotype. Partial EcoR1 restriction enzyme maps around the Tn5 insertion sites were generated. Hybridization of these cloned regions to the previously cloned nod regions of R. meliloti and nif and nod regions of B. japonicum USDA 110 showed no homology, suggesting that these regions represent new symbiotic clusters of B. japonicum.  相似文献   

8.
The genome of the slow-growing Bradyrhizobium japonicum (strain 110) was mutagenized with transposon Tn5. A total of 1623 kanamycin/streptomycin resistant derivatives were screened in soybean infection tests for nodulation (Nod) and symbiotic nitrogen fixation (Fix). In this report we describe 14 strains possessing a stable, reproducible Nod+Fix- phenotype. These strains were also grown under microaerobic culture conditions to test them for free-living nitrogen fixation activity (Nif). In addition to strains having reduced Fix and Nif activities, there were also strains that had reduced symbiotic Fix activity but were Nif+ ex planta.Analysis of the genomic structure revealed that the majority of the strains had a single Tn5 insertion without any further apparent physical alteration. A few strains had additional insertions (by Tn5 or IS50), or a deletion, or had cointegrated part of the vector used for Tn5 mutagenesis. One of the insertions was found in a known nif gene (nifD) whereas all other mutations seem to affect different, hitherto unknown genes or operons.Several mutant strains had an altered nodulation phenotype, inducing numerous, small, widely distributed nodules. Light and electron microscopy revealed that most of these mutants were defective in different stages of bacteroid development and/or bacteroid persistence. The protein patterns of the mutants were inspected by two-dimensional gel electrophoresis after labelling microaerobic cultures with l-(35S)methionine. Of particular interest were mutants lacking a group of proteins the synthesis of which was known to be under oxygen control. Such strains can be regarded as potential regulatory mutants.  相似文献   

9.
The objective of this study was to identify the sites of H-ion exudation and Fe(III) reduction along both inoculated and non-inoculated roots of A7 and T203 soybeans. A split-root system was used in which half the roots of each plant were inoculated and actively fixing nitrogen and the other half were not. Expectedly, the Fe-stress response was strong on both sides of the split-root system in the +N-Fe treatment of variety A7 (inactive nodules) but not of variety T203. The Fe-stress response of A7 was enhanced by the presence of active nodules. Variety T203 is Fe inefficient and normally fails to produce any Fe-stress response, but in the absence of nitrogen and iron (–N–Fe), inoculated roots responded to Fe stress with exudation of both H-ions and reductants. Intact split-root systems were embedded in agar to determine the location of H-ion exudation and Fe(III) reduction. On the inoculated side of the –N–Fe and –N+Fe treatments (active nodules) of both soybean varieties, H-ion production was associated mainly with the active nodules. However, quantities of H-ion release were much greater under Fe stress (–N–Fe) than with adequate Fe (–N+Fe). Reduction of Fe(III) to Fe(II) was found only on the nodulated side with T203, but on both sides with A7. In variety T203 the Fe reduction was associated with younger roots located just below the nodule clusters on the inoculated side of the –N treatments. Active nodules appear to play a key role in the Fe-deficiency stress response of T203 soybean.  相似文献   

10.
It is shown by 31P-NMR and electron microscopy that gramicidin promotes the formation of the hexogonal HII phase in aqueous dispersions of dielaidoylphosphatidylethanolamine and dioleoylphosphatidylethanolamine, when present in molar ratios of 1 : 200 and higher. In addition gramicidin also induces the hexogonal HII phase in aqueous dispersions of dioleoylphosphatidylcholine, when present in molar ratios of 1 : 25 and higher.  相似文献   

11.
Random and site-directed Tn5-induced mutagenesis of Bradyrhizobium japonicum yielded two mutations, one in strain 2960 and the other in strain 2606::Tn5-20, which mapped close to each other but in separate genes. The corresponding wild-type genes were cloned, and their approximate location on the cloned DNA was determined. Mutant 2960 was Fix- and formed green nodules on soybean, whereas strain 2606::Tn5-20 had ca. 4% of wild-type Fix activity and formed white nodules. Cytochrome oxidase assays (Nadi tests) showed a negative reaction with both mutants, indicating a functional deficiency of cytochrome c or its terminal oxidase or both. However, the mutants grew well under aerobic conditions on minimal media with different carbon sources. Furthermore, mutant 2960 had a reduced activity in hydrogen uptake, was unable to grow anaerobically with nitrate as the terminal electron acceptor and 2960-infected soybean nodules contained little, if any, functional leghemoglobin. Southern blot analysis showed that a B. japonicum heme biosynthesis mutant [strain LO505: O'Brian MR, Kirshbom PM, Maier RJ (1987) Proc Natl Acad Sci USA 84: 8390–8393] had its mutation close to the Tn5 insertion site of our mutant 2606::Tn5-20. This finding, combined with the observed phenotypes, suggested that the genes affected in mutants 2960 and 2606::Tn5-20 were involved in some steps of heme biosynthesis thus explaining the pleiotropic respiratory deficiencies of the mutants. Similar to strain LO505, the mutant 2606::Tn5-20 (but not 2960) was defective in the activity of protoporphyrinogen IX oxidase which catalyzes the penultimate step in the heme biosynthesis pathway. This suggests that one of the two cloned genes may code for this enzyme.  相似文献   

12.
To date, the sequences of 45 Bradyrhizobium japonicum genes are known. This provides sufficient information to determine their codon usage and G+C content. Surprisingly, B. japonicum nodulation and NifA-regulated genes were found to have a less biased codon usage and a lower G+C content than genes not belonging to these two groups. Thus, the coding regions of nodulation genes and NifA-regulated genes could hardly be identified in codon preference plots whereas this was not difficult with other genes. The codon frequency table of the highly biased genes was used in a codon preference plot to analyze the RSRj9 sequence which is an insertion sequence (IS)-like element. The plot helped identify a new open reading frame (ORF355) that escaped previous detection because of two sequencing errors. These were now corrected. The deduced gene product of ORF355 in RSRj9 showed extensive similarity to a putative protein encoded by an ORF in the T-DNA of Agrobacterium rhizogenes. The DNA sequences bordering both ORFs showed inverted repeats and potential target site duplications which supported the assumption that they were IS-like elements.  相似文献   

13.
Homogenates from soybean nodules, formed by 12 strains of Bradyrhizobium japonicum, were plated into yeast-extract mannitol agar containing 3 or 37 g mannitol 1-1. Viable counts ranged from 8.298 to 11.265 log10 cells-gram nodule-1. When monitored over the life cycle of the symbiosis, the viability of strains USDA 110 and USDA 123 increased with days after planting (DAP), and at 70 DAP was 95% and 81%, respectively. By contrast, the viability of USDA 38 bacteroids decreased with time, and at 70 DAP was only 1.9%. At 49 DAP, nodules induced by USDA 38 had significantly fewer bacteroids per peribacteroid membrane than those formed by USDA 110 or USDA 123, and at 70 DAP, 27% of the USDA 38 bacteroids showed some degree of degeneration. Viable counts of USDA 123 and USDA 110 bacteroids, isolated from the nodules of 12 different cultivars, ranged from 10.963 to 11.463 and from 10.683 to 11.117 log10 viable cells-gram nodule-1, respectively. Varying the osmolarity of the medium had no predictable effect on bacteroid viability. When surface-sterilized nodules of IPAGO 587 (high bacteroid viability) and USDA 38 (low bacteroid viability) were inoculated into a nonsterile silt loam soil, at rates equivalent to 5.0×108 and 5.0×106 viable bacteroids g-1 soil, respectively, and then incubated at 28° C for 60 days, 4.3×104 and 1.5×104 surviving cells g-1 soil, respectively, were recovered. Thus, despite differences due to host and strain variation, bacteroid viability appears to be unrelated to persistence of individual strains following an annual legume crop cycle.Journal paper No. 14930, Agricultural Experiment Station University of Minnesota, St. Paul, MN 55108, USA  相似文献   

14.
15.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   

16.
Insertion and deletion mutants were used to characterize a genomic region of Rhizobium japonicum where the nitrogenase structural genes are located on two separate operons nifDK and nifH. In addition to previously described nifD:: Tn5 and nifK:: Tn5 mutations we have now generated, by localized mutagenesis, further Tn5 insertion mutations in the vicinity of nifDK as well as within and adjacent to nifH. The nifD:: Tn5, nifK:: Tn5, and nifH:: Tn5 mutant strains were of the Nod+ Fix- phenotype whereas all other mutants were symbiotically fully effective (Nod+ Fix+). The nifH:: Tn5 mutation was helpful in the identification of the nifH gene product (the dinitrogenase reductase) by two-dimensional gel electrophoresis: due to its polar effect this insertion specifically abolished the synthesis of that protein under microaerobic culture conditions. The ultrastructure of soybean root nodules infected with either the nif + wild-type or with the nif - (but otherwise isogenic) mutant strains was analyzed by electron microscopy. All contained fully developed bacteroids, but the nitrogen non-fixing mutants showed massive accumulation of PHB.Of Tn5-containing strains, kanamycin sensitive derivatives were obtained which contained deletions. Several classes of deletion mutants were found which, as judged by their physical DNA structure and their phenotypes, allowed the following most important conclusions: (i) deletions lacking both the nifDK and nifH regions indicate linkage between the two operons whereby at least 15 kb of DNA separate them; (ii) one deletion ending upstream from nifH, and lacking only nifDK, indicates that the nifDK operon is located on the 5-flanking side of the nifH operon; (iii) all deletion mutants are Nod+ indicating that there are no essential nodulation gnes located between and adjacent to nifDK and nifH.  相似文献   

17.
18.
19.
The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant ΔP22. This mutant has a deletion including the 3′ region of exoP, exoT, and the 5′ region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In ΔP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in ΔP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing ΔP22 infectivity under N-starvation.  相似文献   

20.
A freshly-prepared yeast extract at 30 or 50 g/l improved the growth of Bradyrhizobium japonicum SEMIA 587 in a 5-l stirred fermenter. Monosodium glutamate or a commercial yeast extract at 2.0 g/l almost doubled cell mass productivity and cell viability when added at the end of the first exponential growth phase.The authors are with the Divisão de Quimica, Agrupamento de Biotecnologia, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, S/A.-IPT-Cidade Universitária s/n., Caixa Postal 7141, CEP 01064-970, São Paulo, SP, Brazil  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号