首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In mixed infections with Bacillus subtilis phages SP82 and SP01, the SP82 genotype is predominant among the progeny. This predominance is determined by a specific region of the genome, the pos region, which apparently is located near genes 29 to 32 (by the SP01 numbering system). Recombination between SP82 and SP01 yields phage which have both the SP82 pos region and an SP01 mutation. This mutation then behaves in mixed infection as if it were part of an SP82 genome.  相似文献   

2.
SP01- and SP82G-infected Bacillus subtilis CU403 divIVBI minicells synthesize 13 easily detectable early RNA species with molecular weights ranging from 60 × 103 to 430 × 103. Comparison of in vivo and in vitro translation of early messenger RNA indicates that five early mRNAs of SP01 are synthesized but not translated unless protein synthesis has been permitted in the infected minicell, providing evidence for a translation control mechanism. A sequential appearance of 48 polypeptides has been determined in SP01-infected minicells. The polypeptides have been grouped into two classes of early polypeptides, i.e. those encoded by early mRNA and three subsequent classes as demonstrated by the analysis of polypeptides synthesized in minicells infected with the SP01 mutants, susF21, susF4 and susF14. Phage capsid proteins are not synthesized in minicells. RNA synthesized in infected minicells is subject to turnover. The individual mRNA species have differing functional stabilities ranging from a loss of only 50% functional activity, in 20 minutes at 37 °C, to loss of over 99% activity.Infection of anucleate minicells has been shown to be a very simple method for comparison of closely related phages (slight differences are detected between SP01- and SP82G-encoded mRNA and polypeptides), detection of polypeptides affected by amber mutations and the analysis of early events in phage development in the absence of host syntheses.  相似文献   

3.
4.
Linearization of pBG0 (a hydrid between Escherichia coli plasmid pBR322 and Staphylococcus aureus plasmid pUB110) was performed by lysis of the oxolinic acid treated Bacillus subtilis protoplasts with sodium dodecyl sulfate. This plasmid DNA linearization was used both for a detailed mapping of DNA gyrase cleavage sites of various strength and for the nucleotide sequence determinations at the points of gyrase-mediated scission by introducing the XhoI linker DNA. A total of 40 plasmids carrying inserted XhoI linker were sequenced by labeling 3' termini of XhoI sites; 38 of them were found to contain a duplication of four base-pairs of the plasmid sequence flanking the linker, which were characteristic of the oxolinic acid-induced DNA cleavage by E. coli DNA gyrase in vitro and in vivo. The relative strength of these sequenced sites was established by comparing their positions to the sites mapped on the appropriate plasmid genome. This allowed us to propose a consensus sequence of B. subtilis DNA gyrase in vivo cleavage site:GNAT GATCATNC% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaeikaiaabsfacaqGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGOaGaae4raiaabMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa% aeiiaiaabccacaqGOaGaaeyqaiaabMcaaaa!4E92!\[{\rm{(T) (G) (A)}}\]where N is any nucleotide. The bases in parentheses were preferred secondarily. The involvement of DNA gyrase in illegitimate recombination events in Bacillus subtilis is discussed.  相似文献   

5.
6.
Bacillus subtilis deoxyribonucleic acid gyrase   总被引:15,自引:7,他引:8       下载免费PDF全文
Bacillus subtilis 168 was shown to contain a deoxyribonucleic acid (DNA) gyrase activity which closely resembled those of the enzymes isolated from Escherichia coli and Micrococcus luteus in its enzymatic requirements, substrate specificity, and sensitivity to several antibiotics. The enzyme was purified from the wild type and nalidixic acid-resistant and novobiocin-resistant mutants of B. subtilis and was functionally characterized in vitro. The genetic loci nalA and novA but not novB were shown to code for portions of the functional gyrase. Enzyme from the antibiotic-resistant mutants was resistant to the drug in vitro. The most striking observation was the remarkable similarity between the B. subtilis enzyme and other DNA gyrases, especially with respect to the oxolinic acid-induced DNA cleavage in the presence of sodium dodecyl sulfate. All of the enzymes appeared to possess the same specificity of cutting sites regardless of the source or type of DNA used. This result implies that gyrase binding to DNA is highly specific.  相似文献   

7.
8.
9.
Specialized transducing SP beta particles were found that carried the Bacillus subtilis genes lying to the left of the prophage attachment site. Three classes of transducing particles were differentiated, depending upon whether they carried ilvA only, thyB and ilvA, or ilvD, thyB, and ilvA. Lysates prepared by the induction of strains that carried both a transducing phage and a plaque-forming phage contained the two particles in a ratio of about 1:3,000. When the transducing particles were used to transduce a phage-sensitive auxotrophic strain to prototrophy, some of the transductants carried only the transducing phage genomes which, by themselves, were defective. One putative nondefective transducing phage (for ilvA only) is also described. SP beta can mediate specialized transduction even in the absence of the major (recE) bacterial recombination system.  相似文献   

10.
11.
Restriction enzyme analysis of Bacillus subtilis bacteriophage phi 105 DNA   总被引:7,自引:0,他引:7  
The recognition sites on phi 105 DNA for the restriction endonucleases EcoRI, Bg/II, SmaI, KpnI, SstI, SalI, XhoI, NcoI, PstI, HindIII, ClaI, EcoRV and MluI have been mapped. The sites for EcoRI are shown to be different from those published earlier. The DNA from phi 105 contains no recognition sites for the endonucleases BamHI and XbaI.  相似文献   

12.
Virulent bacteriophage phi 1 grows on a variety of Bacillus subtilis strains, mutants of this virus which abortively infect the transformable bacillus. B. subtilis 168, while retaining the ability to productively infect related bacteria have been found. In the present study, we demonstrate that the inability of one such variant, phi 1m, to develop normally in strain 168 is mediated by cryptic prophage SP beta. The latter is a temperate bacteriophage which is carried by B. subtilis 168 and most strains derived from this bacterium. Phi 1 m infection of SP beta lysogens begins with apparently normal adsorption, penetration, and inititaion of virus-directed syntheses. At about the 20th min of the latent period, however, there is an abrupt cessation of nucleic acid synthesis and cellular respiration, accompanied by a change in cell permeability. This course of events can be altered to a permissive infection by mutation in the mpi gene of SP beta, by mutation in the spoOA gene of the host, or by growing SP beta lysogens at high temperature. In addition, we found a second class of phi 1 mutants which abortively infect B. subtilis 168 derivatives even in the absence of the SP beta prophage.  相似文献   

13.
DNA gyrase from Bacillus subtilis 168 was purified by affinity chromatography on novobiocin-Sepharose and shown to consist of two subunits, A and B, with molecular weights of 100,000 and 85,000, respectively. The B subunits, which contains novobiocin-sensitive. ATPase activity, could complement the gyrA protein of Escherichia coli. No complementation was detected between the A subunit and the E. coli gyrB protein.  相似文献   

14.
Plasmid pPL1010 is a 7.0-kilobase derivative of plasmid pUB110 that harbors the cohesive end site of the bacteriophage SP02 genome. Plasmid pPL1017 is a 6.8-kilobase derivative of plasmid pC194 that contains the immunity region of bacteriophage phi 105 and the cohesive end site of bacteriophage SP02. These plasmids are transducible by bacteriophage SP02 at a frequency of 10(-2) transductants per PFU among mutant derivatives of Bacillus subtilis 168 and have been transferred to other strains of B. subtilis and B. amyloliquefaciens by means of bacteriophage SP02-mediated transduction, with frequencies ranging from 10(-5) to 10(-7) transductants per PFU. The introduced plasmids were stably maintained in nearly all new hosts in the absence of selective pressure. An exception was found in B. subtilis DSM704, which also harbored three cryptic plasmids. Plasmids pPL1010 and pPL1017 were incompatible with a 7.9-kilobase replicon native to strain DSM704. Furthermore, plasmid pPL1017 was processed by strain DSM704 into a approximately 5.3-kilobase replicon that was compatible with the resident plasmid content of strain DSM704. The use of bacteriophage SP02-mediated plasmid transduction has allowed the identification of Bacillus strains that are susceptible to bacteriophage SP02-mediated genetic transfer but cannot support bacteriophage SP02 lytic infection.  相似文献   

15.
Defective bacteriophage PBSX, a resident of all Bacillus subtilis 168 chromosomes, packages fragments of DNA from all portions of the host chromosome when induced by mitomycin C. In this study, the physical process for DNA packaging of both chromosomal and plasmid DNAs was examined. Discrete 13-kilobase (kb) lengths of DNA were packaged by wild-type phage, and the process was DNase I resistant and probably occurred by a head-filling mechanism. Genetically engineered isogenic host strains having a chloramphenicol resistance determinant integrated as a genetic flag at two different regions of the chromosome were used to monitor the packaging of specific chromosomal regions. No dramatic selectivity for these regions could be documented. If the wild-type strain 168 contains autonomously replicating plasmids, especially pC194, the mitomycin C induces an increase in size of resident plasmid DNA, which is then packaged as 13-kb pieces into phage heads. In strain RB1144, which lacks substantial portions of the PBSX resident phage region, mitomycin C treatment did not affect the structure of resident plasmids. Induction of PBSX started rolling circle replication on plasmids, which then became packaged as 13-kb fragments. This alteration or cannibalization of plasmid replication resulting from mitomycin C treatment requires for its function some DNA within the prophage deletion of strain RB1144.  相似文献   

16.
SP10 phage cannot propagate in Bacillus subtilis Marburg 168 containing the wild-type allele of either gene nonA or gene nonB. The latter gene codes for the intrinsic cellular restriction activity. SP10 DNA was degraded in nonB+ derivatives of Marburg 168. The degree of degradation depended upon the previous host in which SP10 was propagated. In the case of SP10 grown in B. subtilis W23 (a nonrestricting, nonmodifying bacterium), 90% of the phage DNA was hydrolyzed to acid solubles, and the residual acid-precipitable material was recovered as 0.5- to 1-megadalton fragments. In contrast, if SP10 was propagated in B. subtilis PS9W7 (a nonA nonB derivative of Marburg 168 that retains modifying activity), 40 to 50% of the input DNA was degraded to acid solubles, and most of the remainder was recovered as 15- to 20-megadalton fragments. In nonA+ nonB cells, SP10 DNA was conserved as unit-length molecules (ca. 80 megadalton). Prior infection of nonB+ cells with SP18 protected superinfecting SP10 DNA, even when rifampin or chloramphenicol was added before the primary infection. The data are discussed in terms of the following conclusions. (i) The nonB gene product of B. subtilis Marburg 168 is required for restriction of SP10 DNA. (ii) Some sites on SP10 DNA are sensitive to both the restricting and modifying activities, whereas other sites are nonmodifiable even though they are sensitive to the restriction enzyme. (iii) In some manner, SP18 antagonizes the action of the nonB gene product.  相似文献   

17.
The bacteriophage SP01 genome encodes a virus-specific type II DNA-binding protein, TF1. The bacterial proteins of this ubiquitous and evolutionarily conserved class are thought to bind non-specifically to DNA. In contrast, the experiments described here demonstrate that TF1 binds to specific sites in SP01 DNA. Several of these sites have been characterized by DNase I 'footprinting' and four of them have been shown to overlap strong phage promoters for Bacillus subtilis RNA polymerase holoenzyme. We speculate on the possible structural basis of site-selective DNA binding by a protein of this class.  相似文献   

18.
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA‐mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA‐independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA‐dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.  相似文献   

19.
The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1.   总被引:2,自引:0,他引:2  
V Scarlato  S Gargano 《Gene》1992,118(1):109-113
The bacteriophage SPO1 DNA polymerase-encoding gene, which contains a self-splicing intron, has been sequenced and its amino acid (aa) sequence has been deduced. The aa sequence of SPO1 DNA polymerase shows a high degree of similarity with that of DNA polymerase I from Escherichia coli (Po1I). Alignment with the sequences of Po1I, and the phi 29 and SPO1 DNA polymerases indicate that the aa residues that have been implicated in 3'----5' exonuclease activities are conserved.  相似文献   

20.
Three observations indicated that the 2-megadalton chloramphenicol resistance plasmid pCM194 interferes with SP02 lysogeny of Bacillus subtilis. SP02 plaques formed on B. subtilis(pCM194) appeared almost clear, whereas plaques produced on plasmid-free or pUB110-containing cells contained large turbid centers. The number of phages spontaneously liberated by B. subtilis(SP02) was increased 10-fold or more when pCM194 was also present in the lysogens. Lastly, growth of B. subtilis(SP02, pCM194) for approximately 20 to 25 generations resulted in essentially complete loss of the prophage. This interference was not observed with pUB110 or pE194, and the pCM194 interference was not directed against B. subtilis temperate phage phi 105, which is unrelated to SP02. Lytic replication of SP02 appeared to be unaffected by pCM194. pCM194 interference with SP02 lysogeny was demonstrable in recombination-proficient strains and a recE mutant of B. subtilis. SP02 prophage which were noninducible due to the phage ind mutation were resistant to pCM194 interference. pCM194 interference was lost when the entire pCM194 molecule was joined at its unique HpaII site or at one of the two MboI sites to pUB110 or pUB110 derivatives. pBR322 joined to pCM194 at the same MboI site or at the HindIII site produced chimeras that retained the ability to interfere with SP02 lysogeny. A three-part plasmid constructed by joining pBR322 to pCM194 (at HindIII sites) and to pE194 (at PstI sites) was compatible with the SP02 prophage and showed a temperature-sensitive replication phenotype characteristic of the pE194 replicon. One explanation for the interference involves competition for a host component between an SP02 genome attempting to establish lysogeny and plasmids whose replication is directed by the pCM194 replicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号