首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary .   Bayesian decision procedures have recently been developed for dose escalation in phase I clinical trials concerning pharmacokinetic responses observed in healthy volunteers. This article describes how that general methodology was extended and evaluated for implementation in a specific phase I trial of a novel compound. At the time of writing, the study is ongoing, and it will be some time before the sponsor will wish to put the results into the public domain. This article is an account of how the study was designed in a way that should prove to be safe, accurate, and efficient whatever the true nature of the compound. The study involves the observation of two pharmacokinetic endpoints relating to the plasma concentration of the compound itself and of a metabolite as well as a safety endpoint relating to the occurrence of adverse events. Construction of the design and its evaluation via simulation are presented.  相似文献   

2.
Dose-Finding Designs for HIV Studies   总被引:1,自引:0,他引:1  
We present a class of simple designs that can be used in early dose-finding studies in HIV. Such designs, in contrast with Phase I designs in cancer, have a lot of the Phase II flavor about them. Information on efficacy is obtained during the trial and is as important as that relating to toxicity. The designs proposed here sequentially incorporate the information obtained on viral reduction. Initial doses are given from some fixed range of dose regimens. The doses are ordered in terms of their toxic potential. At any dose, a patient can have one of three outcomes: inability to take the treatment (toxicity), ability to take the treatment but insufficient reduction in viral load (viral failure), and ability to take the treatment as well as a sufficient reduction of viral load (success). A clear goal for some class of designs would be the identification of the dose leading to the greatest percentage of successes. Under certain assumptions, which we identify and discuss, we can obtain efficient designs for this task. Under weaker, sometimes more realistic assumptions, we can still obtain designs that have good operating characteristics in identifying a level, if such a level exists, having some given or greater success rate. In the absence of such a level, the designs will come to an early closure, indicating the ineffectiveness of the new treatment.  相似文献   

3.
O'Quigley J 《Biometrics》2005,61(3):749-756
The continual reassessment method (CRM) is a dose-finding design using a dynamic sequential updating scheme. In common with other dynamic schemes the method estimates a current dose level corresponding to some target percentile for experimentation. The estimate is based on all included subjects. This continual reevaluation is made possible by the use of a simple model. As it stands, neither the CRM, nor any of the other dynamic schemes, allow for the correct estimation of some target percentile, based on retrospective data apart from the exceptional situation in which the simplified model exactly generates the observations. In this article we focus on the very specific issue of retrospective analysis of data generated by some arbitrary mechanism and subsequently analyzed via the continual reassessment method. We show how this can be done consistently. The proposed methodology is not restricted to that particular design and is applicable to any sequential updating scheme in which dose levels are associated with percentiles via model inversion.  相似文献   

4.
Curve-free and model-based continual reassessment method designs   总被引:2,自引:0,他引:2  
O'Quigley J 《Biometrics》2002,58(1):245-249
Gasparini and Eisele (2000, Biometrics 56, 609 615) present a development of the continual reassessment method of O'Quigley, Pepe, and Fisher (1990, Biometrics 46, 33-48). They call their development a curve-free method for Phase I clinical trials. However, unless we are dealing with informative prior information, then the curve-free method coincides with the usual model-based continual reassessment method. Both methods are subject to arbitrary specification parameters, and we provide some discussion on this. Whatever choices are made for one method, there exists equivalent choices for the other method, where " equivalent" means that the operating characteristics (sequential dose allocation and final recommendation) are the same. The insightful development of Gasparini and Eisele provides clarification on some of the basic ideas behind the continual reassessment method, particularly when viewed from a Bayesian perspective. But their development does not lead to a new class of designs and the comparative results in their article, indicating some preference for curve-free designs over model-based designs, are simply reflecting a more fortunate choice of arbitrary specification parameters. Other choices could equally well have inversed their conclusion. A correct conclusion should be one of operational equivalence. The story is different for the case of informative priors, a situation that is inherently much more difficult. We discuss this. We also mention the important idea of two-stage designs (Moller, 1995, Statistics in Medicine 14, 911-922; O'Quigley and Shen, 1996, Biometrics 52, 163-174), arguing, via a simple comparison with the results of Gasparini and Eisele (2000), that there is room for notable gains here. Two-stage designs also have an advantage of avoiding the issue of prior specification altogether.  相似文献   

5.
Wages NA  Conaway MR  O'Quigley J 《Biometrics》2011,67(4):1555-1563
Summary Much of the statistical methodology underlying the experimental design of phase 1 trials in oncology is intended for studies involving a single cytotoxic agent. The goal of these studies is to estimate the maximally tolerated dose, the highest dose that can be administered with an acceptable level of toxicity. A fundamental assumption of these methods is monotonicity of the dose–toxicity curve. This is a reasonable assumption for single‐agent trials in which the administration of greater doses of the agent can be expected to produce dose‐limiting toxicities in increasing proportions of patients. When studying multiple agents, the assumption may not hold because the ordering of the toxicity probabilities could possibly be unknown for several of the available drug combinations. At the same time, some of the orderings are known and so we describe the whole situation as that of a partial ordering. In this article, we propose a new two‐dimensional dose‐finding method for multiple‐agent trials that simplifies to the continual reassessment method (CRM), introduced by O'Quigley, Pepe, and Fisher (1990, Biometrics 46 , 33–48), when the ordering is fully known. This design enables us to relax the assumption of a monotonic dose–toxicity curve. We compare our approach and some simulation results to a CRM design in which the ordering is known as well as to other suggestions for partial orders.  相似文献   

6.
Thall PF  Sung HG  Choudhury A 《Biometrics》2001,57(3):914-921
A new modality for treatment of cancer involves the ex vivo growth of cancer-specific T-cells for subsequent infusion into the patient. The therapeutic aim is selective destruction of cancer cells by the activated infused cells. An important problem in the early phase of developing such a treatment is to determine a maximal tolerated dose (MTD) for use in a subsequent phase II clinical trial. Dose may be quantified by the number of cells infused per unit body weight, and determination of an MTD may be based on the probability of infusional toxicity as a function of dose. As in a phase I trial of a new chemotherapeutic agent, this may be done by treating successive cohorts of patients at different dose levels, with each new level chosen adaptively based on the toxicity data of the patients previously treated. Such a dose-finding strategy is inadequate in T-cell infusion trials because the number of cells grown ex vivo for a given patient may be insufficient for infusing the patient at the current targeted dose. To address this problem, we propose an algorithm for trial conduct that determines a feasible MTD based on the probabilities of both infusibility and toxicity as functions of dose. The method is illustrated by application to a dendritic cell activated lymphocyte infusion trial in the treatment of acute leukemia. A simulation study indicates that the proposed methodology is both safe and reliable.  相似文献   

7.
A new dose-finding design for bivariate outcomes   总被引:2,自引:0,他引:2  
Ivanova A 《Biometrics》2003,59(4):1001-1007
For some drugs, toxicity events lead to early termination of treatment before a therapeutic response is observed. That is, there are three possible outcomes: toxicity (therapeutic response unknown), therapeutic response without toxicity, and no response with no toxicity. The optimal dose is the dose that maximizes the probability of the joint event, response, and no toxicity. The optimal safe dose is the dose, from among the doses with toxicity rate less than the maximum tolerable level, that maximizes the probability of response and no toxicity. We present a new sequential design to maximize the number of subjects assigned in the neighborhood of the optimal safe dose in a dose-finding trial with two outcomes.  相似文献   

8.
G-CSF was among the first cytokines to be identified and rapidly transitioned into clinical medicine. Initially used to promote the production of neutrophils in patients with chemotherapy-induced neutropenia it helped to revolutionize the delivery of cancer therapy. Its ability to mobilize hematopoietic stem cells from the bone marrow into the blood was subsequently exploited, changing the face of hematopoietic stem cell transplantation. Today the knowledge gained in unraveling the mechanisms of stem cell mobilization by G-CSF is being explored as a means to increase chemosensitivity in hematological malignancies. This review provides a brief history of G-CSF and then focuses on recent advances in our understanding of G-CSF-induced stem cell mobilization and the potential clinical application of this knowledge in chemo-sensitization.  相似文献   

9.
Fan SK  Wang YG 《Biometrics》2007,63(3):856-864
Summary .   The goal of this article is to provide a new design framework and its corresponding estimation for phase I trials. Existing phase I designs assign each subject to one dose level based on responses from previous subjects. Yet it is possible that subjects with neither toxicity nor efficacy responses can be treated at higher dose levels, and their subsequent responses to higher doses will provide more information. In addition, for some trials, it might be possible to obtain multiple responses (repeated measures) from a subject at different dose levels. In this article, a nonparametric estimation method is developed for such studies. We also explore how the designs of multiple doses per subject can be implemented to improve design efficiency. The gain of efficiency from "single dose per subject" to "multiple doses per subject" is evaluated for several scenarios. Our numerical study shows that using "multiple doses per subject" and the proposed estimation method together increases the efficiency substantially.  相似文献   

10.
Cheung YK  Chappell R 《Biometrics》2000,56(4):1177-1182
Traditional designs for phase I clinical trials require each patient (or small group of patients) to be completely followed before the next patient or group is assigned. In situations such as when evaluating late-onset effects of radiation or toxicities from chemopreventive agents, this may result in trials of impractically long duration. We propose a new method, called the time-to-event continual reassessment method (TITE-CRM), that allows patients to be entered in a staggered fashion. It is an extension of the continual reassessment method (CRM; O'Quigley, Pepe, and Fisher, 1990, Biometrics 46, 33-48). We also note that this time-to-toxicity approach can be applied to extend other designs for studies of short-term toxicities. We prove that the recommended dose given by the TITE-CRM converges to the correct level under certain conditions. A simulation study shows our method's accuracy and safety are comparable with CRM's while the former takes a much shorter trial duration: a trial that would take up to 12 years to complete by the CRM could be reduced to 2-4 years by our method.  相似文献   

11.
12.
Ivanova A  Kim SH 《Biometrics》2009,65(1):307-315
Summary .  In many phase I trials, the design goal is to find the dose associated with a certain target toxicity rate. In some trials, the goal can be to find the dose with a certain weighted sum of rates of various toxicity grades. For others, the goal is to find the dose with a certain mean value of a continuous response. In this article, we describe a dose-finding design that can be used in any of the dose-finding trials described above, trials where the target dose is defined as the dose at which a certain monotone function of the dose is a prespecified value. At each step of the proposed design, the normalized difference between the current dose and the target is computed. If that difference is close to zero, the dose is repeated. Otherwise, the dose is increased or decreased, depending on the sign of the difference.  相似文献   

13.
Although there are several new designs for phase I cancer clinical trials including the continual reassessment method and accelerated titration design, the traditional algorithm-based designs, like the '3 + 3' design, are still widely used because of their practical simplicity. In this paper, we study some key statistical properties of the traditional algorithm-based designs in a general framework and derive the exact formulae for the corresponding statistical quantities. These quantities are important for the investigator to gain insights regarding the design of the trial, and are (i) the probability of a dose being chosen as the maximum tolerated dose (MTD); (ii) the expected number of patients treated at each dose level; (iii) target toxicity level (i.e. the expected dose-limiting toxicity (DLT) incidences at the MTD); (iv) expected DLT incidences at each dose level and (v) expected overall DLT incidences in the trial. Real examples of clinical trials are given, and a computer program to do the calculation can be found at the authors' website approximately linyo" locator-type="url">http://www2.umdnj.edu/ approximately linyo.  相似文献   

14.
15.
As a dose-finding phase I study of a new liposomal formulation of doxorubicin (LipD), patients (n?=?39; median age: 60 years; range, 41–75; median ECOG performance status, 1; range, 0–2) with refractory cancer had a starting dose of LipD administered at 30?mg/m2 as a 1-hour iintravenous infusion. Cycle duration was 21 days. At the recommended dose (RD), patients received a first cycle of nonliposomal doxorubicin (non-LipD) to evaluate intrapatient pharmacokinetic differences between non-LipD and LipD. The most frequent diagnosis was head and neck tumor (7 patients). Tolerance and safety of dose levels of 30, 40, 50, 60, 70, 80, and 90?mg/m2 were evaluated. A total of 131 cycles were administered (median per patient, 3; range, 1–6). Of the 39 patients, 8 completed the planned six cycles. Febrile neutropenia was dose limiting and defined the toxic dose of LipD as 70?mg/m2. Other significant toxicities included asthenia (G2: 31%; G3: 8%), neutropenia (G3: 35%; G4: 29%), thrombopenia (G3: 15%; G4: 2%), anemia (G1–G2: 67%; G3–G4: 5%), mucositis (G1–G2: 32%, G3: 4%), and acute allergic reactions (G1–G2: 36%). Comparison of pharmacokinetic profiles of non-LipD and LipD showed that higher exposure was achieved with LipD. Stable disease was observed in 14 patients. We conclude that the LipD regimen, given as a 1-hour infusion every 3 weeks, is well tolerated and has a favorable pharmacokinetic profile. The recommended dose is 70?mg/m2 with prophylactic antihistamines and corticoids to preempt allergic reaction.  相似文献   

16.
We consider treatment regimes in which an agent is administered continuously at a specified concentration until either a response is achieved or a predetermined maximum infusion time is reached. Response is an event defined to characterize therapeutic efficacy. A portion of the maximum planned total amount administered is given as an initial bolus. For such regimes, the amount of the agent received by the patient depends on the time to response. An additional complication when response is evaluated periodically rather than continuously is that the response time is interval censored. We address the problem of designing a clinical trial in which such response time data and a binary indicator of toxicity are used together to jointly optimize the concentration and the size of the bolus. We propose a sequentially adaptive Bayesian design that chooses the optimal treatment for successive patients by maximizing the posterior mean utility of the joint efficacy-toxicity outcome. The methodology is illustrated by a trial in which tissue plasminogen activator is infused intraarterially as rapid treatment for acute ischemic stroke.  相似文献   

17.
Summary A murine IgG2b monoclonal antibody directed to the constant part of the human / T cell receptor (BMA031) was investigated in a pilot study as an initial treatment for acute graft-versus-host disease (aGvHD) after allogeneic bone marrow transplantation. The treatment protocol consisted of 5 mg BMA031 on 5 consecutive days with continuation of the prophylactic baseline immuno suppression using cyclosporin. Seven patients with grades II–III acute graft-versus-host disease were entered on the protocol and six patients completed the full treatment course. Mild to moderate acute adverse reactions to the first BMA031 infusion occurred in three patients. A nearly complete decline of circulating T lymphocytes was observed during BMA031 therapy, but the T cells returned to pretreatment values within 1 week after the last infusion. Serum pharmacokinetics of free antibody best fitted to a two-compartment open model with a mean initial half-life of 6 h and an estimated mean terminal half-life of 40 h. One patient developed antimurine antibodies of the IgM subclass. In five patients a complete and sustained resolution of all disease manifestations was attained, while in one patient a temporary response of skin involvement with aGvHD was noted. These results indicate that BMA031 can be safely administered as initial treatment of aGvHD. The therapeutic responses observed warrant its further clinical evaluation in this setting.  相似文献   

18.

Aims

Transplantation of bone marrow mononuclear cells (BMMCs) exerts neuroprotection against cerebral ischemia. We examined the therapeutic timepoint of allogeneic BMMC transplantation in a rat model of focal cerebral ischemia, and determined the effects of repeated transplantation outside the therapeutic window.

Main methods

Male Sprague–Dawley rats were subjected to 90 minute focal cerebral ischemia, followed by intravenous administration of 1 × 107 allogeneic BMMCs or vehicle at 0, 3 or 6 h after reperfusion or 2 × 107 BMMCs 6 h after reperfusion. Other rats administered 1 × 107 BMMCs at 6 h after reperfusion received additional BMMC transplantation or vehicle 9 h after reperfusion. Infarct volumes, neurological deficit scores and immunohistochemistry were evaluated 24 or 72 h after reperfusion.

Key findings

Infarct volumes at 24 h were significantly decreased in transplantation rats at 0 and 3 h, but not at 6 h, after reperfusion, compared to vehicle-treatment. Even high dose BMMC transplantation at 6 h after reperfusion was ineffective. Repeated BMMC transplantation at 6 and 9 h after reperfusion reduced infarct volumes and significantly improved neurological deficit scores at 24 and 72 h. Immunohistochemistry showed repeated BMMC transplantation reduced ionized calcium-binding adapter molecule 1, 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine expression at 24 and 72 h after reperfusion.

Significance

Intravenous allogeneic BMMCs were neuroprotective following transient focal cerebral ischemia, and the therapeutic time window of BMMC transplantation was > 3 h and < 6 h after reperfusion in this model. Repeated transplantation at 6 and 9 h after reperfusion suppressed inflammation and oxidative stress in ischemic brains, resulting in improved neuroprotection.  相似文献   

19.
Yin G  Yuan Y 《Biometrics》2009,65(3):866-875
Summary .  Two-agent combination trials have recently attracted enormous attention in oncology research. There are several strong motivations for combining different agents in a treatment: to induce the synergistic treatment effect, to increase the dose intensity with nonoverlapping toxicities, and to target different tumor cell susceptibilities. To accommodate this growing trend in clinical trials, we propose a Bayesian adaptive design for dose finding based on latent 2 × 2 tables. In the search for the maximum tolerated dose combination, we continuously update the posterior estimates for the unknown parameters associated with marginal probabilities and the correlation parameter based on the data from successive patients. By reordering the dose toxicity probabilities in the two-dimensional space, we assign each coming cohort of patients to the most appropriate dose combination. We conduct extensive simulation studies to examine the operating characteristics of the proposed method under various practical scenarios. Finally, we illustrate our dose-finding procedure with a clinical trial of agent combinations at M. D. Anderson Cancer Center.  相似文献   

20.
The diagnosis of invasive fungal infections (IFI) remains a challenge, particularly for diseases caused by filamentous fungi such as Aspergillus species. Unfortunately, many patients affected by these conditions are not identified before autopsy. Therefore, there is a need for new diagnostic methods for IFI. Galactomannan is a soluble antigen released during hyphal growth in tissues. A commercially available sandwich ELISA assay that detects galactomannan has been used in Europe for many years and is now approved for use in the USA. The test has an excellent negative predictive value in the detection of invasive aspergillosis (IA) in high-risk patients. In addition, it is more sensitive than culture and allows IA to be diagnosed before clinical manifestations occur. However, false-negative and false-positive results in certain populations are the main limitations to its use. The purpose of this review is to summarize the current knowledge about galactomannan testing in patients at risk for IA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号