首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important role in atherogenesis is played by oxidative stress, which may be induced by common risk factors. Mitochondria are both sources and targets of reactive oxygen species, and there is growing evidence that mitochondrial dysfunction may be a relevant intermediate mechanism by which cardiovascular risk factors lead to the formation of vascular lesions. Mitochondrial DNA is probably the most sensitive cellular target of reactive oxygen species. Damage to mitochondrial DNA correlates with the extent of atherosclerosis. Several cardiovascular risk factors are demonstrated causes of mitochondrial damage. Oxidized low density lipoprotein and hyperglycemia may induce the production of reactive oxygen species in mitochondria of macrophages and endothelial cells. Conversely, reactive oxygen species may favor the development of type 2 diabetes mellitus, mainly through the induction of insulin resistance. Similarly - in addition to being a cause of endothelial dysfunction, reactive oxygen species and subsequent mitochondrial dysfunction - hypertension may develop in the presence of mitochondrial DNA mutations. Finally, other risk factors, such as aging, hyperhomocysteinemia and cigarette smoking, are also associated with mitochondrial damage and an increased production of free radicals. So far clinical studies have been unable to demonstrate that antioxidants have any effect on human atherogenesis. Mitochondrial targeted antioxidants might provide more significant results.  相似文献   

2.
Mitochondrial bioenergetics in aging   总被引:5,自引:0,他引:5  
Mitochondria are strongly involved in the production of reactive oxygen species, considered as the pathogenic agent of many diseases and of aging. The mitochondrial theory of aging considers somatic mutations of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, complex I appears to be mostly affected and to become strongly rate limiting for electron transfer. Mitochondrial bioenergetics is also deranged in human platelets upon aging, as shown by the decreased Pasteur effect (enhancement of lactate production by respiratory chain inhibition). Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants, coenzyme Q is the only one of endogenous biosynthesis. Exogenous coenzyme Q, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases.  相似文献   

3.
Mitochondrial DNA is subject to increased rates of mutations due to its proximity to the source of reactive oxygen species. Here we show that increased MHC class I (MHC I) expression serves to alert the immune system to cells with mitochondrial mutations. MHC I is overexpressed in fibroblasts with mitochondrial dysfunction from patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and in lymphocytes from purine nucleoside phosphorylase-deficient immune-deficient mice with mitochondrial DNA deletions. Consistent with a role of MHC I in the elimination of cells containing mitochondrial DNA mutations, mice deficient in MHC I accumulate mitochondrial DNA deletions in various tissues. These observations in both mice and humans suggest a role for the immune system in preventing reversion of mitochondrial DNA back into a parasitic state following deleterious mutations affecting mitochondrial oxidative phosphorylation.  相似文献   

4.
Mitochondrial defects have been found in aging and several age‐related diseases. Mice with a homozygous mutation in the exonuclease encoding domain of mitochondrial DNA polymerase gamma (Polgm/m) are prone to age‐dependent accumulation of mitochondrial DNA mutations and have shown a broad spectrum of aging‐like phenotypes. However, the mechanism of cardiac phenotypes in relation to the role of mitochondrial DNA mutations and oxidative stress in this mouse model has not been fully addressed. We demonstrate age‐dependent cardiomyopathy in Polgm/m mice, which by 13–14 months of age displays marked cardiac hypertrophy and dilatation, impairment of systolic and diastolic function, and increased cardiac fibrosis. This age‐dependent cardiomyopathy is associated with increases in mitochondrial DNA (mtDNA) deletions and protein oxidative damage, increased expression of apoptotic and senescence markers, as well as a decline in signaling for mitochondrial biogenesis. The relationship of these changes to mitochondrial reactive oxygen species (ROS) was tested by crossing Polgm/m mice with mice that overexpress mitochondrial targeted catalase (mCAT). All of the above phenotypes were partially rescued in Polgm/m/mCAT mice. These data indicate that accumulation of mitochondrial DNA damage with age can lead to cardiomyopathy and that this phenotype is partly mediated by mitochondrial oxidative stress.  相似文献   

5.
Mitochondrial DNA damage and the aging process: facts and imaginations   总被引:5,自引:0,他引:5  
  相似文献   

6.
Mitochondrial dysfunction has long been associated with the aging process and the onset of numerous diseases. Regulation of the complex protein-folding environment within the organelle is essential for maintaining efficient metabolic output. Over time, dysregulation of protein homeostasis arises through stress induced by the accumulation of reactive oxygen species and mutations in the mitochondrial genome introduced during replication. To preserve organelle function during biogenesis, remodeling and stress, quality control of mitochondrial proteins must be monitored by molecular chaperones and proteases stationed in the four compartments of the organelle. Here, we review mitochondrial protein quality control with a focus on organelle biogenesis and aging.  相似文献   

7.
8.
Mitochondrial DNA (mtDNA) accumulates both base-substitution mutations and deletions with aging in several tissues in mammals. Here, we examine the evidence supporting a causative role for mtDNA mutations in mammalian aging. We describe and compare human diseases and mouse models associated with mitochondrial genome instability. We also discuss potential mechanisms for the generation of these mutations and the means by which they may mediate their pathological consequences. Strategies for slowing the accumulation and attenuating the effects of mtDNA mutations are discussed.  相似文献   

9.
The mitochondrial theory of aging   总被引:3,自引:0,他引:3  
Mitochondria are not only the main source of energy for most eukaryotic cells, but also the main source of free radicals. These reactive molecules can damage all components of a cell such as membranes, proteins and DNA. Therefore they have long been suspected to be involved in the biological aging process. The fact that mitochondria posses their own genetic material (mtDNA) and that they only have a limited arsenal of DNA repair processes makes them one of the prime targets for reactive oxygen species. The idea that genetically damaged mitochondria accumulate with time and are causally responsible for the aging phenotype via a disturbed energy budget is at the core of the so called mitochondrial theory of aging. In recent years this idea has gained impetus from the discovery of mitochondrial diseases and mtDNA deletions in old organisms. However, there are still many open questions regarding the mechanism of the accumulation of these deletions and their physiological relevance. This review is therefore intended to give an overview of the current state of the mitochondrial theory of aging and to discuss some recent experimental findings.  相似文献   

10.
Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging   总被引:4,自引:0,他引:4  
A wide spectrum of alterations in mitochondria and mitochondrial DNA (mtDNA) with aging has been observed in animals and humans. These include (i) decline in mitochondrial respiratory function; (ii) increase in mitochondrial production of reactive oxygen species (ROS) and the extent of oxidative damage to DNA, proteins, and lipids; (iii) accumulation of point mutations and large-scale deletions of mtDNA; and (iv) enhanced apoptosis. Recent studies have provided abundant evidence to substantiate the importance of mitochondrial production of ROS in aging. On the other hand, somatic mtDNA mutations can cause premature aging without increasing ROS production. In this review, we focus on the roles that ROS play in the aging-associated decline of mitochondrial respiratory function, accumulation of mtDNA mutations, apoptosis, and alteration of gene expression profiles. Taking these findings together, we suggest that mitochondrial dysfunction, enhanced oxidative stress, subsequent accumulation of mtDNA mutations, altered expression of a few clusters of genes, and apoptosis are important contributors to human aging.  相似文献   

11.
Jash S  Adhya S 《Mitochondrion》2011,11(4):607-614
Many human diseases are associated with mutations and deletions in mitochondrial DNA (mtDNA). We have generated a cell line, EB delta1, with multiple mtDNA deletions, that is respiration-defective and generates high levels of superoxide, a reactive oxygen species. Treatment of EB delta1 with tagged polycistronic (pc) RNAs, encoding parts of the mitochondrial proteome, bound to a multi-subunit carrier complex, resulted in cellular uptake and transfer of the RNA to mitochondria, restoration of respiration, and suppression of superoxide levels. These findings have implications for correction of mitochondrial defects in age-related disorders due to mtDNA mutations.  相似文献   

12.
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.  相似文献   

13.
Aging is a natural, complex, and multifactorial biological process associated with impairment of bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses, and increased risk of contracting age-associated diseases. Oxidative stress is widely thought to underpin many aging processes. The mitochondrion, the powerhouse of the cell, is considered the most important cellular organelle to contribute to the aging process, mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids, and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, is known to be intimately involved in several mitochondrial bioenergetic processes as well as mitochondrial-dependent steps in apoptosis and mitochondrial membrane stability and dynamics. Alterations to cardiolipin structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we discuss several aspects of mitochondrial bioenergetic alterations in aging and the role played by reactive oxygen species and cardiolipin in these alterations.  相似文献   

14.
Mitochondrial DNA repair and aging   总被引:17,自引:0,他引:17  
The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.  相似文献   

15.
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.  相似文献   

16.
Increasing experimental evidence supports a connection between inflammation and mitochondrial dysfunction. Both acute and chronic inflammatory diseases course with elevated free radicals production that may affect mitochondrial proteins, lipids, and mtDNA. The subsequent mitochondrial impairment produces more reactive oxygen species that further reduce the ATP generation, increasing the probability of cell death. Mitochondrial impairment in now considered a key factor in inflammation because (1) there are specific pathologies directly derived from mtDNA mutations, causing chronic inflammatory diseases such as neuromuscular and neurodegenerative disorders, (2) there are neurodegenerative, metabolic, and other inflammatory diseases in which their progression is accompanied by mitochondrial dysfunction, which is directly involved in the cell death. Recently, a direct implication of mitochondrial reactive oxygen species and, particularly, mtDNA in the innate immune response has been reported. Thus, the mitochondria should be considered targets for new therapies related to the treatment of acute and chronic inflammatory diseases, including the auto-inflammatory ones.  相似文献   

17.
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

18.
Deletions of mitochondrial DNA (mtDNA) are associated with aging and several chronic diseases. We have reported heterogeneous mutations between base pair 8468 and 13446 in mtDNA, the region known as the "common" deletion, in muscle of older humans with impaired glucose tolerance or diabetes mellitus. To further characterize potential effects of age and glycemia on mtDNA integrity, we studied corpulent JCR:LA-cp rats that are characterized by insulin resistance, hyperinsulinemia, and hyperlipidemia, factors strongly associated with both aging and cardiovascular disease. In addition to skeletal muscle, we isolated vascular smooth muscle cells (VSMC) from aortas of 6-, 12-, and 17-month-old rats and exposed them to 5-, 25-, 62-, and 100-mM glucose or a combination of hypoxanthine (100 microM) and xanthine oxidase (0.025 U/ml) to generate reactive oxygen species in separate cultures. Long- and short-fragment and nested polymerase chain reaction was used to detect mutations in the common deletion region. The data demonstrate that aging and the cp genotype confer susceptibility to mtDNA deletions in vivo and that high glucose concentrations can induce mtDNA mutations in vitro. Accordingly, aging and glucose-related oxidative stress and possibly hyperinsulinemia may contribute to alterations in mitochondrial gene integrity and the cp genotype appears to increase the susceptibility of muscle to the age-related accumulation of mtDNA mutations.  相似文献   

19.
Mitochondrial DNA (mtDNA) mutations and deletions are frequently observed in cancer, and contribute to altered energy metabolism, increased reactive oxygen species (ROS), and attenuated apoptotic response to anticancer agents. The mechanisms by which cells maintain mitochondrial genomic integrity and the reason why cancer cells exhibit more frequent mtDNA mutations remain unclear. Here, we report that the tumor suppressor molecule p53 has a novel role in maintaining mitochondrial genetic stability through its ability to translocate to mitochondria and interact with mtDNA polymerase gamma (pol gamma) in response to mtDNA damage induced by exogenous and endogenous insults including ROS. The p53 protein physically interacts with mtDNA and pol gamma, and enhances the DNA replication function of pol gamma. Loss of p53 results in a significant increase in mtDNA vulnerability to damage, leading to increased frequency of in vivo mtDNA mutations, which are reversed by stable transfection of wild-type p53. This study provides a mechanistic explanation for the accelerating genetic instability and increased ROS stress in cancer cells associated with loss of p53.  相似文献   

20.
Manipulation of mitochondrial DNA gene expression in the mouse   总被引:6,自引:0,他引:6  
Mitochondrial dysfunction due to impaired respiratory chain function is increasingly recognized as an important cause of human disease. Mitochondrial disorders are relatively common and have an estimated incidence of 1:10,000 live births. There are more than 100 different point mutations and numerous large rearrangements of mitochondrial DNA (mtDNA; mainly single deletions) that cause human disease. We aimed at obtaining an animal model to study physiological aspects of mtDNA mutation disorders. There are as yet unsolved technical problems associated with transfection of mammalian mitochondria. We therefore choose to manipulate mtDNA expression by targeting of the nuclear gene encoding Tfam. We utilised the cre-loxP recombination system to disrupt Tfam since this system allows manipulation of respiratory chain function in selected mouse tissues. We have found increased cell death or apoptosis induction in both germ line and tissue-specific Tfam knockouts. Our results further suggest that increased production of reactive oxygen species (ROS) is not a prominent feature in cells with impaired mtDNA expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号