首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human alpha 1-antichymotrypsin has been cloned, sequenced and expressed in Escherichia coli and recombinant protein as well as point-specific mutants have been purified and characterized. The corrected gene-deduced amino acid sequence has 45% overall identity with alpha 1-protease inhibitor, which is higher than the 42% previously reported (Chandra, T., Stackhouse, R., Kidd, V. J., Robson, J. H., and Woo, S. L. C. (1983) Biochemistry 22, 5055-5060). Recombinant antichymotrypsin (rACT) is similar to natural antichymotrypsin with respect to the specificity of its interactions with proteases. Its second-order rate constant for association with bovine chymotrypsin is 6-8 x 10(5) M-1 s-1, which is identical to that of the serum-derived inhibitor. Site-specific mutagenesis has been used to produce two variants of rACT in which the P1 position has been changed from leucine to either methionine (L358M-rACT) or arginine (L358R-rACT). L358M-rACT has a specificity of inhibitory activity toward serine proteases closely similar to that of native rACT. By contrast, the specificity of L358R-rACT is quite different from that of native rACT, most notably in efficiently inhibiting trypsin and human thrombin while showing a decreased ability to inhibit chymotrypsin.  相似文献   

2.
3.
确定沙眼衣原体CT358蛋白在衣原体感染细胞中的位置并初步鉴定其生物学功能.采用PCR方法从D型沙眼衣原体的基因组中扩增CT358基因,并克隆入pGEX和pDSRedC1表达载体中.将重组质粒pGEX-CT358转化到XL1-blue宿主菌,并诱导表达融合蛋白GST-CT358.纯化后的CT358融合蛋白免疫小鼠制备抗体,应用间接免疫荧光技术对CT358蛋白在衣原体感染细胞内的定位及表达模式进行分析.同时,pDSRedC1-CT358重组质粒瞬时转染HeLa细胞,观察CT358蛋白对衣原体感染的影响.实验结果证明CT358蛋白为沙眼衣原体包涵体膜蛋白.该蛋白质在衣原体感染12 h后就表达定位于包涵体膜上,直至持续到整个感染周期,转基因在胞浆表达的CT358融合蛋白不影响其后的衣原体感染.该研究为深入研究衣原体与宿主细胞间相互作用提供了新的线索,并可为衣原体性的治疗、预防提供新方向.  相似文献   

4.
In this paper we describe the construction and use in Pseudomonas putida WCS358 of phoE-caa, a novel hybrid marker gene, which allows monitoring both at the protein level by immunological methods and at the DNA level by PCR. The marker is based on the Escherichia coli outer membrane protein gene phoE and 75 bp of E. coli caa, which encode a nonbacteriocinic fragment of colicin A. This fragment contains an epitope which is recognized by monoclonal antibody (MAb) 1C11. As the epitope is contained in one of the cell surface-exposed loops of PhoE, whole cells of bacteria expressing the protein can be detected by using the MAb. The marker gene contains only E. coli sequences not coding for toxins and therefore can be considered environmentally safe. The hybrid PhoE-ColA protein was expressed in E. coli under conditions of phosphate starvation, and single cells could be detected by immunofluorescence microscopy with MAb 1C11. Using a wide-host-range vector the phoE-caa gene was introduced into P. putida WCS358. The gene appeared to be expressed under phosphate limitation in this species, and the gene product was present in the membrane fraction and reacted with MAb 1C11. The hybrid PhoE-ColA protein could be detected on whole cells of WCS358 mutant strains lacking (part of) the O-antigen of the lipopolysaccharide but not on wild-type WCS358 cells, unless these cells had previously been washed with 10 mM EDTA. In addition to immunodetection, the phoE-caa marker gene could be specifically detected by PCR with one primer directed to a part of the phoE sequence and a second primer that annealed to the caa insert.  相似文献   

5.
Two closely related crystal structures of alpha 1-proteinase inhibitor modified at the reactive site peptide bond Met358--Ser359 have been analysed. The crystal structure has been obtained from diffraction data at 3 A resolution, with phases originally from isomorphous replacement. The electron density map was substantially improved by cyclic averaging of the electron densities of the two crystal forms and allowed the chain to be traced in terms of the known chemical amino acid sequence. Energy restrained crystallographic refinement was initiated and resulted in conventional R-values of 0.251 for the tetragonal crystal form (6 to 3 A resolution) and 0.247 for the hexagonal crystal form (6 to 3.2 A resolution). The polypeptide chain is almost completely arranged in well-defined secondary structural elements: three beta-sheets and eight alpha-helices. The helices are preferentially formed by the first 150 residues. They are in proximity underneath sheet A. The chain ends Met358 and Ser359 of the nicked species are arranged in strands on opposite ends of the molecule indicating a major structural rearrangement upon modification of the intact inhibitor. It is suggested that the Met358 strand is in a different conformation removed from sheet A and approaches Ser359 in the intact inhibitor species. Glu342, which is exchanged by a lysine in the Z-variant is in a strategic position for such a rearrangement. The three carbohydrate chains of alpha 1-proteinase inhibitor have partly defined electron density close to their attachment sites at asparagine residues. The anti-thrombin and ovalbumin amino acid sequences can be accommodated in the alpha 1 inhibitor molecular structure. The intron-exon junctions of the ovalbumin and the alpha 1-proteinase inhibitor gene are all in surface loops of the mature protein.  相似文献   

6.
7.
The nuclear pore complex (NPC) is the only gateway for molecular trafficking across the nuclear envelope. The NPC is not merely a static nuclear-cytoplasmic transport gate; the functional analysis of nucleoporins has revealed dynamic features of the NPC in various cellular functions, such as mitotic spindle formation and protein modification. However, it is not known whether the NPC undergoes dynamic changes during biological processes such as cell differentiation. In the present study, we evaluate changes in the expression levels of several nucleoporins and show that the amount of Nup358/RanBP2 within individual NPCs increases during muscle differentiation in C2C12 cells. Using atomic force microscopy, we demonstrate structural differences between the cytoplasmic surfaces of myoblast and myotube NPCs and a correlation between the copy number of Nup358 and the NPC structure. Furthermore, small interfering RNA-mediated depletion of Nup358 in myoblasts suppresses myotube formation without affecting cell viability, suggesting that NUP358 plays a role in myogenesis. These findings indicate that the NPC undergoes dynamic remodeling during muscle cell differentiation and that Nup358 is prominently involved in the remodeling process.  相似文献   

8.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of myocardium in the right ventricular free wall and frequently results in life-threatening ventricular arrhythmias and sudden cardiac death. A heterozygous missense mutation in the transmembrane protein 43 (TMEM43) gene, p.S358L, has been genetically identified to cause autosomal dominant ARVC type 5 in a founder population from the island of Newfoundland, Canada. Little is known about the function of the TMEM43 protein or how it leads to the pathogenesis of ARVC. We sought to determine the distribution of TMEM43 and the effect of the p.S358L mutation on the expression and distribution of various intercalated (IC) disc proteins as well as functional effects on IC disc gap junction dye transfer and conduction velocity in cell culture. Through Western blot analysis, transmission electron microscopy (TEM), immunofluorescence (IF), and electrophysiological analysis, our results showed that the stable expression of p.S358L mutation in the HL-1 cardiac cell line resulted in decreased Zonula Occludens (ZO-1) expression and the loss of ZO-1 localization to cell-cell junctions. Junctional Plakoglobin (JUP) and α-catenin proteins were redistributed to the cytoplasm with decreased localization to cell-cell junctions. Connexin-43 (Cx43) phosphorylation was altered, and there was reduced gap junction dye transfer and conduction velocity in mutant TMEM43-transfected cells. These observations suggest that expression of the p.S358L mutant of TMEM43 found in ARVC type 5 may affect localization of proteins involved in conduction, alter gap junction function and reduce conduction velocity in cardiac tissue.  相似文献   

9.
The fourth EGF-like domain of thrombomodulin (TM4), residues E346-F389 in the TM sequence, has been synthesized. Refolding of the synthetic product under redox conditions gave a single major product. The disulfide bonding pattern of the folded, oxidized domain was (1-3, 2-4, 5-6), which is the same as that found in EGF protein. TM4 was tested for TM anticoagulant activity because deletion and substitution mutagenesis experiments have shown that the fourth EGF-like domain of TM is essential for TM cofactor activity. TM4 showed no TM-like activity in two assay systems, both for inhibition of fibrin clot formation, and for cofactor activity in thrombin activation of protein C. A preliminary structure of TM4 was determined by 2D 1H NMR from 519 NOE-derived distance constraints. Distance geometry calculations yielded a single convergent structure. The structure resembles the structure of EGF and other known EGF-like domains but has some key differences. The central two-stranded beta-sheet is conserved despite the differences in the number of amino acids in the loops. The C-terminal loop formed by the disulfide bond between C372 and C386 in TM4 is five amino acids longer than the analogous loop between C33 and C42 of EGF protein. This loop appears to have a different fold in TM4 than in EGF protein. The loop forms the two outside strands of a broken, irregular tri-stranded beta-sheet, and amino acids H384-F389 lie between the two strands forming the middle strand of the sheet. Thus, although the C-terminus of EGF protein forms one of the outside strands of a tri-stranded antiparallel sheet, the C-terminus of TM4 forms the inside strand of an irregular tri-stranded parallel-anti-parallel sheet. The residues D349, E357, and E374, which were shown to be critical for cofactor activity by alanine scanning mutagenesis, all lie in a patch near the C-terminal loop, and are solvent accessible. The other critical residues, Y358 and F376, are largely buried and appear to play essential structural rather than functional roles.  相似文献   

10.
We have solved the solution structure of the N-terminal region of the fission yeast centromere protein, Abp1, bound to a 21-base pair DNA fragment bearing its recognition site (Mw = 30 kDa). Although the two DNA-binding domains in the Abp1 protein were defined well by a conventional NOE-based NMR methodology, the overall structure of the Abp1 protein was poorly defined, due to the lack of interdomain distance restraints. Therefore, we additionally used residual dipolar couplings measured in a weakly aligned state, and rotational diffusion anisotropies. Neither the NH residual dipolar couplings nor the backbone 15N T 1/T 2 data were sufficient to determine the overall structure of the Abp1 protein, due to spectral overlap. We used a combination of these two orientational restraints (residual dipolar coupling and rotational diffusion anisotropy), which significantly improved the convergence of the overall structures. The range of the observed T 1/T 2 ratios was wider (20–50 for the secondary structure regions of Abp1) than the previously reported data for several globular proteins, indicating that the overall shape of the Abp1DNA complex is ellipsoid. This extended form would facilitate the recognition of the two separate sites in the relatively long DNA sequence by the DNA-binding domains of Apb1.  相似文献   

11.
12.
Several variants of alpha 1-proteinase inhibitor (alpha 1-PI) were investigated by spectroscopic methods and characterized according to their inhibitory activity. Replacement of Thr345 (P14) with Arg in alpha 1-PI containing an Arg residue in position 358 (yielding [Thr345----Arg, Met358----Arg]alpha 1-PI) results in complete loss of its inhibitory activity against human alpha-thrombin; whereas an exchange of residue Met351 (P8) by Glu [( Met351----Glu, Met358----Arg]alpha 1-PI) does not alter activity. [Thr345----Arg, Met358----Arg]alpha 1-PI is rapidly cleaved by thrombin, while [Met358----Arg]alpha 1-PI and [Met351----Glu, Met358----Arg]alpha 1-PI form stable proteinase-inhibitor complexes. The stability of [Thr345----Arg, Met358----Arg]alpha 1-PI against guanidinium chloride denaturation is significantly enhanced compared to wild-type alpha 1-PI, and does not change after cleavage, resembling ovalbumin, a serpin with no inhibitory activity, from which the Thr345----Arg amino acid exchange had been derived. [Met351----Glu, Met358----Arg]alpha 1-PI and [Met358----Arg]alpha 1-PI resemble the wild-type protein in this respect. The CD spectra of intact and cleaved alpha 1-PI variants do not compare well with the wild-type protein, probably reflecting local structural differences. Insertion of a synthetic peptide, which corresponds to residues Thr345----Met358 of human alpha 1-PI, leads to the formation of binary complexes with all variants having the characteristic features of the binary complex between peptide and wild-type protein.  相似文献   

13.
14.
The rpoS gene which encodes a stationary phase sigma factor has been identified and characterised from the rhizosphere-colonising plant growth-promoting Pseudomonas putida strain WCS358. The predicted protein sequence has extensive homologies with the RpoS proteins form other bacteria, in particular with the RpoS sigma factors of the fluorescent pseudomonads. A genomic transposon insertion in the rpoS gene was constructed, these mutants were analysed for their ability to produce siderophore (iron-transport agent) and the autoinducer quorum-sensing molecules called homoserine lactones (AHL). It was determined that RpoS was not involved in the regulation of siderophore and AHL production, synthesis of these molecules is important for gene expression at stationary phase. P. putida WCS358 produces at least three different AHL molecules.  相似文献   

15.
16.
The wild-type herpes simplex virus 1 genome consists of two components, L and S, which invert relative to each other, giving rise to four isomers. Previously we reported the construction of a herpes simplex virus 1 genome, HSV-1(F)I358, from which 15 kilobase pairs of DNA spanning the junction between L and S components were deleted and which no longer inverted (Poffenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2690-2694, 1983). Further studies on the structure of HSV-1(F)I358 revealed the presence of two submolar populations among packaged DNA. The first, comprising no more than 10% of total packaged DNA, consisted of defective genomes with a subunit size of 36 kilobase pairs. The results suggest that this population arose by recombination through a directly repeated sequence inserted in place of the deleted L-S junction. The second minor population consisted of HSV-1(F)I358 DNA linked head-to-tail. Analyses of the structure of HSV-1(F)I358 DNA after infection indicated that the fraction of total DNA linked head-to-tail increased to approximately 40 to 50% within 30 min after exposure of cells to virus. The formation of head-to-tail linkages did not require de novo protein synthesis. Our interpretation of the results is that the termini of full-length DNA molecules are held together during packaging, that a small fraction of the termini is covalently linked during or after packaging, and that the remainder is covalently joined after the release of viral DNA from the infecting virus by either host or viral factors introduced into the cell during infection.  相似文献   

17.
When higher eukaryotic cells transition into mitosis, the nuclear envelope, nuclear pore complexes, and nuclear lamina are coordinately disassembled. The COPI coatomer complex, which plays a major role in membrane remodeling at the Golgi, has been implicated in the process of nuclear envelope breakdown and requires interactions at the nuclear pore complex for recruitment to this new site of action at mitosis. Nup153, a resident of the nuclear pore basket, was found to be involved in COPI recruitment, but the molecular nature of the interface between COPI and the nuclear pore has not been fully elucidated. To better understand what occurs at the nuclear pore at this juncture, we have probed the role of the nucleoporin Nup358/RanBP2. Nup358 contains a repetitive zinc finger domain with overall organization similar to a region within Nup153 that is critical to COPI association, yet inspection of these two zinc finger domains reveals features that also clearly distinguish them. Here, we found that the Nup358 zinc finger domain, but not a zinc finger domain from an unrelated protein, binds to COPI and dominantly inhibits progression of nuclear envelope breakdown in an assay that robustly recapitulates this process in vitro. Moreover, the Nup358 zinc finger domain interferes with COPI recruitment to the nuclear rim. Consistent with a role for this pore protein in coordinating nuclear envelope breakdown, Nup358-specific antibodies impair nuclear disassembly. Significantly, targeting either Nup153 or Nup358 for inhibition perturbs nuclear envelope breakdown, supporting a model in which these nucleoporins play nonredundant roles, perhaps contributing to COPI recruitment platforms on both the nuclear and cytoplasmic faces of the pore. We found that an individual zinc finger is the minimal interface for COPI association, although tandem zinc fingers are optimal. These results provide new information about the critical components of nuclear membrane remodeling and lay the foundation for a better understanding of how this process is regulated.  相似文献   

18.
Desmoglein‐3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full‐length peptide (Dsg3/189–205, Dsg3/206–222, Dsg3/342–358, and Dsg3/761–777) and its N‐terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure–activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20 h of stimulation, the interferon (IFN)‐γ content of the supernatants was measured by enzyme‐linked immunosorbent assay. In the in vitro conditions, peptides were stable and non‐cytotoxic. The in vitro IFN‐γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342–358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192–205, Dsg3/763–777, and Dsg3/764–777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were the most capable to distinguish between healthy and PV donors. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The plasma protein alpha 2-antiplasmin is the main physiological inhibitor of the serine protease plasmin, which is responsible for the dissolution of fibrin clots. We have determined the primary structure of mature human alpha 2-antiplasmin by DNA sequencing of overlapping cDNA fragments prepared from human liver mRNA. cDNA clones were identified by hybridization with a 48-base pair deoxyoligonucleotide probe deduced from the sequence of a 16-amino acid peptide of alpha 2-antiplasmin. Mature human alpha 2-antiplasmin contains 452 amino acids. It is homologous (23-28%) with five other proteins belonging to the serine protease inhibitor (serpin) superfamily. Its reactive site, i.e. the peptide bond cleaved by reaction with its primary target enzyme, plasmin, consists of Arg364-Met365. This dipeptide corresponds to the reactive site Met358-Ser359 of the archetypal serpin, alpha 1-antitrypsin.  相似文献   

20.
alpha 1-Antitrypsin (alpha 1-AT) was recently identified as a major physiologic plasma inhibitor of activated protein C. The reaction with activated protein C of recombinant alpha 1-AT containing amino acid substitutions at the reactive center was studied. The substitution of Arg358 for Met, as observed in a patient with a severe bleeding disorder with the mutant alpha 1-AT Pittsburgh, increased the association rate constant for activated protein C from 1.1 x 10(1) to 4.9 x 10(4) M-1 s-1. The association rate constant of activated protein C with protein C inhibitor, a native plasma serpin that contains Arg354 at the reactive site, is 6 x 10(3) M-1 s-1 in the absence of heparin. Plasma containing 4 microM [Arg358]alpha 1-AT inhibited activated protein C activity by greater than 95% in 15 s, and the inhibited activated protein C was shown by immunoblotting to exist as activated protein C-inhibitor complexes. In controls 50% loss of activated protein C activity in normal plasma occurred in 19 min. Double-substituted [Pro357,Met358]alpha 1-AT----[Ala357,Arg358]alpha 1-AT had similar reactivity toward activated protein C as the single-substituted [Arg358]alpha 1-AT. Thus, replacement of the reactive center Met358 of alpha 1-AT by Arg358, analogous to Arg354 of protein C inhibitor, results in an activated protein C inhibitor that is more potent than either of the native inhibitors. Comparison of the association rate constant of the [Arg358]alpha 1-AT for activated protein C to that for thrombin (4 x 10(4) versus 3 x 10(5) M-1 s-1) suggests that thrombin would be more effectively inhibited than activated protein C, thereby giving an explanation for bleeding rather than thrombosis in the alpha 1-AT Pittsburgh patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号