首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Of 24 ethyl methanesulphonate-induced, recessive-lethal mutations in the region 9E1-9F13 of the X chromosome of Drosophila melanogaster, eight fall into a typically homogeneous lethal complementation group associated with the raspberry (ras) locus. Mutations in this group have previously been shown to be pleiotropic, affecting not only ras but also two other genetic entities, gua 1 and pur 1, which yield auxotrophic mutations.--The eight new mutations have been characterized phenotypically in double heterozygotes with gua 1, pur 1 and ras mutations. Despite their homogeneity in lethal complementation tests, the mutations prove quite diverse. For example, two mutations have little or no effect on eye color in double heterozygotes with ras2. The differences between the lethals are allele-specific and cannot be explained as a trivial outcome of a hypomorphic series.--Taken alone, the lethal complementation studies mask the complexity of the locus and the diversity of its recessive lethal alleles. By extension, we argue that the general use of lethal saturation studies provides an unduly simplified image of genetic organization. We suggest that the reason why recessive lethal mutations rarely present complex complementation patterns is that complex loci tend to produce mutations that affect several subfunctions.  相似文献   

2.
E. M. Rinchik 《Genetics》1994,137(3):855-865
Numerous new mutations at the brown (b) locus in mouse chromosome 4 have been recovered over the years in germ-cell mutagenesis experiments performed at the Oak Ridge National Laboratory. A large series of radiation- and chemical-induced b mutations known to be chromosomal deletions, and also known to be prenatally lethal when homozygous, were analyzed by pairwise complementation crosses as well as by pseudodominance tests involving flanking loci defined by externally visible phenotypes. These crosses were designed to determine the extent of each deletion on the genetic and phenotype map of the chromosomal region surrounding the b locus; the crosses also provided basic data that assigned deletions to complementation groups and defined four new loci associated with aberrancies in normal development. Specifically, the pseudodominance tests identified deletions that include the proximally mapping whirler (wi) and the distally mapping depilated (dep) genes, thereby bracketing these loci defined by visible developmental abnormalities with landmarks (deletion breakpoints) that are easily identified on the physical map. Furthermore, the complementation crosses, which were supplemented with additional crosses that allowed determination of the gross time of lethality of selected deletions, defined four new loci required for normal development. Homozygous deletion of one of these loci (b-associated fitness, baf) results in a runting syndrome evident during postnatal development; deletion of one locus [l(4)2Rn] causes death in the late gestation/neonatal period; and deletion of either of two loci [l(4)1Rn or l(4)3Rn] results in embryonic death, most likely in pre-, peri- or postimplantation stages. The placement of these new functionally defined loci on the evolving molecular map of the b region should be useful for continuing the analysis of the roles played in development by genes in this segment of chromosome 4.  相似文献   

3.
We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.  相似文献   

4.
B. G. Leicht  J. J. Bonner 《Genetics》1988,119(3):579-593
In an effort to (1) characterize the 67 interval of chromosome 3 of Drosophila melanogaster genetically and (2) isolate mutations of the 67B1 small heat shock protein (hsp) gene cluster specifically, we undertook a mutational analysis of the 67A-D subinterval. Using a deficiency of the 67A2 to 67D11-13 region, Df(3L)AC1, we screened 8700 diepoxybutane-treated chromosomes and 7800 ethyl methanesulfonate-treated chromosomes for visible and lethal mutations throughout this interval and recovered 74 independent recessive lethal mutations, but no visible mutations. One of the lethal mutations, d29A6, was identified as an overlapping deficiency extending from 66F3 to 67B1. An additional 6000 diepoxybutane-treated chromosomes were screened for lethality over d29A6, yielding another four lethal mutations within the 67A2-B1 subinterval. These 78 lethal mutations, along with two others isolated in other laboratories, define 23 essential loci--6 within the 67A2-B1 subinterval and 17 within the 67A2 to D11-13 subinterval. Many of these loci appear to be required for imaginal development only, exhibiting late larval to pharate adult lethal phases. Examination of the 67A2-B1 lethal complementation groups for (1) earlier onset of lethality following a heat shock, (2) missing or altered small hsps on two-dimensional protein gels, and (3) restoration of viability by transformed wild-type copies of the small hsp genes indicates that none of these mutations affect the small hsps. On the basis of this analysis and the known homology of the genes, we conclude that the small hsps are functionally equivalent.  相似文献   

5.
Cell movement is an important feature of animal development, wound healing and tumor metastasis; however, the mechanisms underlying cell motility remain to be elucidated. To further our understanding, it would be useful to identify all of the proteins that are essential for a cell to migrate, yet such information is not currently available for any cell type. We have carried out a screen for mutations affecting border cell migration in Drosophila. Mutations that cause defects in mosaic clones were identified, so that genes that are also required for viability could be detected. From 6000 mutagenized lines, 20 mutations on chromosome 2R were isolated that cause defects in border cell position. One of the mutations was dominant while all of the recessive mutations appeared to be homozygous lethal. This lethality was used to place the mutations into 16 complementation groups. Many of the mutations failed to complement cytologically characterized deficiencies, allowing their rapid mapping. Mutations in three loci altered expression of a marker gene in the border cells, whereas the remaining mutations did not. One mutation, which caused production of supernumerary border cells, was found to disrupt the costal-2 locus, indicating a role for Hedgehog signaling in border cell development. This screen identified many new loci required for border cell migration and our results suggest that this is a useful approach for elucidating the mechanisms involved in cell motility.  相似文献   

6.
A. M. Hoogwerf  M. Akam    D. Roberts 《Genetics》1988,118(4):665-670
We describe a genetic analysis of the region 68C8-69B5 defined by Df(3L)vin-7. We have induced 35 new lethal mutations in this region, which together with 20 existing lethal mutations, visible mutations, genes identified by protein products and one gene deduced from complementation data fall into 37 complementation groups in this 35-band interval. Using existing and newly induced deficiencies we have assigned these to 11 intervals defined by deficiency breakpoints. Those mutations which fell in the same breakpoint interval as the Lsp-2 gene, which codes for the abundant larval serum protein 2, were the subject of detailed study. None was rescued by the active Lsp-2 gene transformed on to chromosome II and we conclude that, as yet, we have no lethal mutations of Lsp-2.  相似文献   

7.
E P Walsh  N H Brown 《Genetics》1998,150(2):791-805
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function.  相似文献   

8.
Mutations in the unc-52 locus of Caenorhabditis elegans have been classified into three different groups based on their complex pattern of complementation. These mutations result in progressive paralysis (class 1 mutations) or in lethality (class 2 and 3 mutations). The paralysis exhibited by animals carrying class 1 mutations is caused by disruption of the myofilaments at their points of attachment to the cell membrane in the body wall muscle cells. We have determined that mutations of this class also have an effect on the somatic gonad, and this may be due to a similar disruption in the myoepithelial sheath cells of the uterus, or in the uterine muscle cells. Mutations that suppress the body wall muscle defects of the class 1 unc-52 mutations have been isolated, and they define a new locus, sup-38. Only the muscle disorganization of the Unc-52 mutants is suppressed; the gonad abnormalities are not, and the suppressors do not rescue the lethal phenotype of the class 2 and class 3 mutations. The suppressor mutations on their own exhibit a variable degree of gonad and muscle disorganization. Putative null sup-38 mutations cause maternal-effect lethality which is rescued by a wild-type copy of the locus in the zygote. These loss-of-function mutations have no effect on the body wall muscle structure.  相似文献   

9.
Ethyl methanesulphonate (EMS) was used to induce 39 lethal and 13 karmoisin mutations within Df(3R)kar3J, a nine-band deficiency extending from 87C1 to 87C9 (inclusive). Five complementation groups (four lethal and one visible) were identified and cytologically mapped between 87C4–5 and 87C9, one complementation group per band, with the exception of complementation group A, which is localized to 87C4–5. These positions were determined using a set of overlapping deficiencies, each having at least one breakpoint in the 87C1–9 region. Mutations within a single complementation group have similar lethal phases or subvital phenotypes, consistent with the notion that each complementation group represents a single functional locus. No mutations localized to 87C1–C3. The inability to induce mutations in the 87C1 heat-shock puff locus is consistent with the current interpretation of a duplication of coding sequences at the 87A7 and 87C1 heat-shock puffs.  相似文献   

10.
Mutations at the Steel (St) locus produce pleiotropic effects on viability as well as hematopoiesis, pigmentation and fertility. Several homozygous viable Sl alleles have previously been shown to contain either structural alterations in mast cell growth factor (Mgf) or regulatory mutations that affect expression of the Mgf gene. More severe Sl alleles cause lethality to homozygous embryos and all lethal Sl alleles examined to data contain deletions that remove the entire Mgf coding region. As the timing of the lethality varies from early to late in gestation, it is possible that some deletions may affect other closely linked genes in addition to Mgf. We have analyzed the extent of deleted sequences in seven homozygous lethal Sl alleles. The results of this analysis suggest that late gestation lethality represents the Sl null phenotype and that peri-implantation lethality results from the deletion of at least one essential gene that maps proximal to Sl. We have also examined gene dosage effects of Sl by comparing the phenotypes of mice homozygous and hemizygous for each of four viable Sl alleles. Lastly, we show that certain combinations of the viable Sl alleles exhibit interallelic complementation. Possible mechanisms by which such complementation could occur are discussed.  相似文献   

11.
In the genome of Drosophila melanogaster there is a single locus, Triplo-lethal (Tpl), that causes lethality when present in either one or three copies in an otherwise diploid animal. Previous attempts to mutagenize Tpl produced alleles that were viable over a chromosome bearing a duplication of Tpl, but were not lethal in combination with a wild-type chromosome, as deficiencies for Tpl are. These mutations were interpreted as hypomorphic alleles of Tpl. In this work, we show that these alleles are not mutations at Tpl; rather, they are dominant mutations in a tightly linked, but cytologically distant, locus that we have named Suppressor-of-Tpl (Su(Tpl)). Su(Tpl) mutations suppress the lethality associated with three copies of the Triplo-lethal locus and are recessive lethal. We have mapped Su(Tpl) to the approximate map position 3-46.5, within the cytological region 76B-76D.  相似文献   

12.
The genetic complementation patterns of both behavioral and lethal alleles at the stoned locus have been characterized. Mosaic analysis of a stoned lethal allele suggests that stoned functions either in the nervous system or in both the nervous system and musculature, but is not required for gross neural development. The behavioral alleles stn(ts) and stn(C), appear to be defective in a diametrically opposite sense, show interallelic complementation, and indicate distinct roles for the stoned gene product in the visual system and in motor coordination. A number of other neurological mutations have been investigated for their possible interaction with the viable stoned alleles. Mutations at two loci, dunce and shibire, act synergistically with the stn(ts) mutations to cause lethality, but fail to interact with stn(C). A third variant (Suppressor of stoned) has been identified which can suppress the debilitation associated with the stn(ts) mutations. These data, together with a previously identified interaction between the stn(ts) and tan mutants, indicate a central role for the stoned gene product in neuronal function, and suggests that the stoned gene product interacts, either directly or indirectly, with the neural cAMP second messenger system, with the synaptic membrane recycling pathway via dynamin, and with biogenic amine metabolism.  相似文献   

13.
Developmental effects of six mutations in the gene encoding the majority of alpha-tubulin in all tissues at all stages of Drosophila melanogaster development have been examined. All six alleles produce at least partially stable alpha 84B protein. In genetic assays, two of these alleles approximate the null condition. The other four alleles appear to form a graded series of hypomorphs. The two most severe alleles produce a semidominant maternal-effect polyphasic lethality, plus a predominantly larval recessive zygotic lethality. Clonal analysis of one of these alleles suggests it is a cell lethal. Worsening of the lethal phenotype (negative complementation) occurs in most interallelic heterozygotes involving these two mutations. As hemizygotes, the other four alleles are predominantly larval/pupal lethals. Partial complementation is achieved by most interallelic heterozygotes involving these four alleles. Phenotypic defects associated with the six tubulin mutation include disrupted embryos, pseudopupae, pharate adults with defects in various cuticular pattern elements, pharate adults with retarded head development, adults with leg tremors and extremely short life spans, and viable but sterile adults with bristle defects.  相似文献   

14.
In previous studies, X-ray-induced specific-locus mutations in the adenine-3 (ad-3) region of a two-component heterokaryon (H-12) of Neurospora crassa were combined with a series of tester strains carrying markers in the ad-3 and immediately adjacent regions to map mutants that were presumed multilocus deletions (de Serres, 1989c, 1990a). Two new classes of X-ray-induced mutations were recovered: multiple-locus mutations consisting of gene/point mutations at the ad-3A or ad-3B locus with a closely linked recessive lethal mutation, or multilocus deletions covering the ad-3A, ad-3B and/or nic-2 loci with a closely linked recessive lethal mutation (designated ad-3R + RLCL and [ad-3]IR + RLCL, respectively). Thus, the ad-3 specific-locus assay can detect damage occurring at the ad-3A and the ad-3B loci, as well as at a minimum of 19 other loci in the immediately adjacent regions. The original overall spectrum of ad-3 mutations can be resolved, by genetic analysis, into a series of 30 subclasses. In the present paper, the data from the genetic analysis of 832 X-ray-induced mutants recovered from a series of 4 experiments (Webber and de Serres, 1965) have been presented in terms of Mutational Spectra organized as a function of X-ray dose. Comparison of these Spectra demonstrates the shift from high percentages of gene/point mutations (with a high percentage of mutants at the ad-3B locus showing allelic complementation) at low doses, to low percentages of gene/point mutations (with a low percentage of ad-3B mutants showing allelic complementation) and high percentages of multilocus deletion mutations and multiple-locus mutations (of genotype ad-3R + RLCL or [ad-3]IR + RLCL) at high doses. These Mutational Spectra demonstrate the marked dose-dependence of X-ray-induced specific-locus mutations in a eukaryotic organism.  相似文献   

15.
Steroid signaling underlies developmental processes in animals. Mutations that impair steroidogenesis in the fruit fly Drosophila melanogaster provide tools to dissect steroid hormone action genetically. The widely used temperature-sensitive mutation ecdysoneless(1) (ecd(1)) disrupts production of the steroid hormone ecdysone, and causes developmental and reproductive defects. These defects cannot be satisfactorily interpreted without analysis of the ecd gene. Here, we show that ecd encodes an as yet functionally undescribed protein that is conserved throughout eukaryotes. The ecd(1) conditional allele contains an amino acid substitution, whereas three non-conditional larval lethal mutations result in truncated Ecd proteins. Consistent with its role in steroid synthesis, Ecd is expressed in the ecdysone-producing larval ring gland. However, development of ecd-null early larval lethal mutants cannot be advanced by Ecd expression targeted to the ring gland or by hormone feeding. Cell-autonomous ecd function, suggested by these experiments, is evidenced by the inability of ecd(-) clones to survive within developing imaginal discs. Ecd is also expressed in the ovary, and is required in both the follicle cells and the germline for oocyte development. These defects, induced by the loss of ecd, provide the first direct evidence for a cell-autonomous function of this evolutionarily conserved protein.  相似文献   

16.
G V Pokholkova  I V Solov'eva 《Genetika》1989,25(10):1776-1785
19 new mutations in the 9F12-10A7 region of Drosophila melanogaster X chromosome was obtained in the system of P-M hybrid dysgenesis. They appeared to be lethals, as judged from viability of homo- or hemizygous females. In situ hybridization of P DNA with polytene chromosomes revealed P-element insertion in the 10A1-2 band in the majority of the mutants. As a result of complementation analysis, all these mutations were localized at previously known loci: l(1)BP1, l(1)BP5, l(1)BP8, l(1)BP7. No insertion mutations were found at the vermilion locus. This can imply for non-random distribution of insertion mutations in the region studied. Further comparison of these mutations with previously EMS-induced ones revealed that insertion mutations are predominantly hypomorph lethals which do not influence the viability, morphology and fertility of homozygous males and females, but drastically reduce viability of hemizygous females.  相似文献   

17.
The phenotypes of five different lethal mutants of Drosophila melanogaster that have small imaginal discs were analyzed in detail. From these results, we inferred whether or not the observed imaginal disc phenotype resulted exclusively from a primary imaginal disc defect in each mutant. To examine the validity of these inferences, we employed a multiple-allele method. Lethal alleles of the five third-chromosome mutations were identified by screening EMS-treated chromosomes for those which fail to complement with a chromosome containing all five reference mutations. Twenty-four mutants were isolated from 13,197 treated chromosomes. Each of the 24 was then tested for complementation with each of the five reference mutants. There was no significant difference in the mutation frequencies at these five loci. The stage of lethality and the imaginal disc morphology of each mutant allele were compared to those of its reference allele in order to examine the range of defects to be found among lethal alleles of each locus. In addition, hybrids of the alleles were examined for intracistronic complementation. For two of the five loci, we detected no significant phenotypic variation among lethal alleles. We infer that each of the mutant alleles at these two loci cause expression of the null activity phenotype. However, for the three other loci, we did detect significant phenotypic variation among lethal alleles. In fact, one of the mutant alleles at each of these three loci causes no detectable imaginal disc defect. This demonstrates that attempting to assess the developmental role of a gene by studying a single mutant allele may lead to erroneous conclusions. As a byproduct of the mutagenesis procedure, we have isolated two dominant, cold-sensitive mutants.  相似文献   

18.
Forty-seven lethal mutations and alleles of nine visible loci (including alcohol dehydrogenase) have been mapped by both deficiency mapping and, in most cases, by recombination mapping to a small region (34D-35C) of chromosome arm 2L of Drosophila melanogaster. The lethals fall into approximately 21 complementation groups, and we estimate that the total number of lethal plus visible complementation groups within the 34-band deficiency, Df(2L)64j, is approximately 34, a remarkable numerical coincidence. The possible genetic significance of this coincidence is discussed. Lethals mapping close to the structural gene for alcohol dehydrogenase, both distally and proximally, have been identified and will be used for the construction of selective crosses for the study of exchange within this locus. Despite many abnormal cytological features (e.g., ectopic pairing, weak points) region 35 of chromosome arm 2L does not display any unusual genetic features; indeed, in terms of the amount of recombination per band and the average map distance between adjacent loci, this region is similar to that between zeste and white on the X chromosome.  相似文献   

19.
20.
Genetic analysis has been performed to reveal vital genes around two puffs, a late 62C puff and an early-late 62E puff. Their roles in hormonal regulatory mechanisms have been estimated. A locus represented by four lethal mutations has been found in the vicinity of the 62E puff. The mutants display disturbed puffing, which suggests the involvement of this locus in hormonal regulatory mechanisms. In the 62C puff region, 26 mutations have been found that proved to be allelic to mutations in theD-Titin gene. The giant D-Titin gene is essential for the sarcomeric organization of striated muscles. According to the results of in situ hybridization with polytene chromosomes, the D-Titin gene occupies the entire 62C puff. The phenotypic characteristics of the novel mutants suggest that this protein is polyfunctional, and its role is not restricted to processes in the muscular tissue. It may also be involved in the morphogenesis of leg imaginal disks, and it is necessary for condensation and separation of sister chromatids during mitosis. Mutations in the ecdysone-induced BR-C and E74 genes cause disturbances similar to those found in this study. In addition, mutations of these genes can affect the D-Titin gene activity, which suggests that the three genes are involved in similar morphogenetic and myogenetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号