首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

2.
Increased potency of vanadium using organic ligands   总被引:5,自引:0,他引:5  
Thein vivo glucose lowering effect of orally administered inorganic vanadium compounds in diabetes was first reported in our laboratory in 1985. While both vanadate and vanadyl forms of vanadium are orally active, they are still not well absorbed. We have synthesized several organic vanadium compounds and one compound, bis(maltolato)oxovanadium(IV) or BMOV, has been extensively investigated. BMOV proved effective in lowering plasma glucose and lipids in STZ-diabetic rats when administered in drinking water over a 25 week period. The maintenance dose (0.18 mmol/kg/day) was approximately 50% of that required for vanadyl sulfate (VS). Secondary complications of diabetes were prevented by BMOV and no marked toxicity was noted. Oral gavage of STZ-diabetic rats with BMOV also reduced blood glucose levels. The ED50 for BMOV was 0.5 mmol/kg, while for VS the estimated ED50 was 0.9 mmol/kg. BMOV was also effective by the intraperitoneal route in STZ-diabetic rats. The ED50 was 0.08 mmol/kg compared to 0.22 mmol/kg for VS. Some animals treated p.o. or i.p. remained euglycemic for up to 14 weeks. An i.v. infusion of BMOV of 0.05 mmol/kg over a 30 min period reduced plasma glucose levels by 50% while VS was not effective.  相似文献   

3.
We have studied the in vivo and in vitro effects of Topiramate (TPM) in female Zucker diabetic fatty (ZDF) rats. After weight matching, drug treatment had a marked effect to lower fasting glucose levels of relatively normoglycemic animals as well as during an oral glucose tolerance test. The glucose clamp studies revealed a approximately 30% increased glucose disposal, increased hepatic glucose output (HGO) suppression from approximately 30 to 60%, and an increased free fatty acid suppression from 40 to 75%. Therefore, TPM treatment led to enhanced insulin sensitivity at the level of tissue glucose disposal (increased ISGDR), liver (increased inhibition of HGO), and adipose tissue (enhanced suppression of lipolysis). When soleus muscle strips of control or TPM-treated ZDF rats were studied ex vivo, insulin-stimulated glucose transport was not enhanced in the drug-treated animals. In contrast, when isolated adipocytes were studied ex vivo, a marked increase (+55%) in insulin-stimulated glucose transport was observed. In vitro treatment of muscle strips and rat adipocytes showed no effect on glucose transport in muscle with a 40% increase in insulin-stimulated adipocyte glucose transport. In conclusion, 1) TPM treatment leads to a decrease in plasma glucose and increased in vivo insulin sensitivity; 2) insulin sensitization was observed in adipocytes, but not muscle, when tissues were studied ex vivo or in vitro; and 3) TPM directly enhances insulin action in insulin-resistant adipose cells in vitro. Thus the in vivo effects of TPM treatment appear to be exerted through adipose tissue.  相似文献   

4.
The molecular basis of insulin resistance, a major risk factor for development of Type II diabetes, involves defective insulin signaling. Insulin-mediated signal transduction is negatively regulated by the phosphotyrosine phosphatase, PTP1B, and numerous studies have demonstrated that organo-vanadium compounds, which are nonselective phosphotyrosine phosphatase inhibitors, have insulin-mimetic properties. However, whether or not vanadium compounds can prevent the transition from insulin resistance to overt diabetes is unknown. We compared the ability of bis(maltolato)oxovanadium(IV) (BMOV), an orally bioavailable organo-vanadium compound, and rosiglitazone maleate (RSG), a known insulin sensitizer, to prevent development of diabetes in Zucker diabetic fatty (ZDF) rats. Treatment began at 6 weeks of age when animals are insulin resistant and hyperinsulinemic, but not yet hyperglycemic, and ended at 12 weeks of age, which is 4 weeks after ZDF rats typically develop overt diabetes. BMOV-treated ZDF rats did not develop hyperglycemia, showed significant improvement in insulin sensitivity, and retained normal pancreatic islet morphology and endocrine cell distribution, similar to RSG-treated animals. BMOV and RSG treatment also prevented the hyper-phagia and polydipsia present in untreated ZDF rats; however, BMOV-treated ZDF rats gained much less weight than did RSG-treated animals. Circulating levels of adiponectin decreased in untreated ZDF rats compared to lean controls, but these levels remained normal in BMOV-treated ZDF rats. In contrast, in RSG-treated ZDF rats, plasma adiponectin levels were nearly 4-fold higher than in lean control rats, primarily as a result of a large increase in the amount of low-molecular weight forms of adiponectin in circulation. These data demonstrate that phosphatase inhibition offers a new approach to diabetes prevention, one that may have advantages over current approaches.  相似文献   

5.
Hepatic glucose fluxes and intracellular movement of glucokinase (GK) in response to increased plasma glucose and insulin were examined in 10-wk-old, 6-h-fasted, conscious Zucker diabetic fatty (ZDF) rats and lean littermates. Under basal conditions, plasma glucose (mmol/l) and glucose turnover rate (GTR; micromol.kg(-1).min(-1)) were slightly higher in ZDF (8.4 +/- 0.3 and 53 +/- 7, respectively) than in lean rats (6.2 +/- 0.2 and 45 +/- 4, respectively), whereas plasma insulin (pmol/l) was higher in ZDF (1,800 +/- 350) than in lean rats (150 +/- 14). The ratio of hepatic uridine 5'-diphosphate-glucose 3H specific activity to plasma glucose 3H specific activity ([3H]UDP-G/[3H]G; %), total hepatic glucose output (micromol.kg(-1).min(-1)), and hepatic glucose cycling (micromol.kg(-1).min(-1)) were higher in ZDF (35 +/- 5, 87 +/- 16, and 33 +/- 10, respectively) compared with lean rats (18 +/- 3, 56 +/- 6, and 11 +/- 2, respectively). [3H]glucose incorporation into glycogen (micromol glucose/g liver) was similar in lean (1.0 +/- 0.7) and ZDF (1.6 +/- 0.8) rats. GK was predominantly located in the nucleus in both rats. With elevated plasma glucose and insulin, GTR (micromol.kg(-1).min(-1)), [3H]UDP-G/[3H]G (%), and [3H]glucose incorporation into glycogen (micromol glucose/g liver) were markedly higher in lean (191 +/- 22, 62 +/- 3, and 5.0 +/- 1.4, respectively) but similar in ZDF rats (100 +/- 6, 37 +/- 3, and 1.4 +/- 0.4, respectively) compared with basal conditions. GK translocation from the nucleus to the cytoplasm occurred in lean but not in ZDF rats. The unresponsiveness of hepatic glucose flux to the rise in plasma glucose and insulin seen in prediabetic ZDF rats was associated with impaired GK translocation.  相似文献   

6.
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT-98014 and CT-98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type IIb epitrochlearis and type I soleus muscles from ZDF rats with CT-98014 increased glycogen synthase activity (49 and 50%, respectively, P < 0.05) but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT-98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37 and 24%) and soleus (43 and 26%), and these effects were associated with increased cell-surface GLUT4 protein. Lithium enhanced glycogen synthase activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 x 30 mg/kg) of CT-98023 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26 and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of the insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.  相似文献   

7.
A series of 2-alkyl-3-hydroxy-4-pyrone oxovanadium(IV) compounds has been synthesized, characterized, and tested for bioactivity as potential insulin-enhancing agents. The vanadyl complexes, bis(maltolato)oxovanadium(IV), BMOV, bis(ethylmaltolato)oxovanadium(IV), BEOV, and bis(isopropylmaltolato)oxovanadium(IV), BIOV, were compared against vanadyl sulfate for glucose-lowering ability, when administered i.p. to STZ-diabetic rats, at a one-time dose of 0.1 mmol kg(-1)body weight. Blood levels of vanadium were determined at regular intervals, to 72 h, following i.p. injection. All complexes tested exceeded vanadyl sulfate in glucose-lowering ability; this effect was not correlated, however, with blood vanadium levels. Analysis of the pharmacokinetics of the disappearance of [ethyl-1-(14)C]BEOV after an oral gavage dose (50 mg kg(-1), 0.144 mmol kg(-1), in a 10 mL kg(-1) volume of 1% CMC solution) indicated clearly that metal ion-ligand dissociation took place relatively soon after oral ingestion of the complex. Half-lives of fast phase uptake and slow phase disappearance for (14)C and V were calculated from a two-compartment model for whole blood, plasma, liver, kidney, bone, small intestine, and lung, ranging from 17 min ( t(1/2)alpha for (14)C, liver) to 30 days ( t(1/2)beta for V, bone). Curves of disappearance of plasma and whole blood (14)C and V diverged dramatically within the first hour after administration of the vanadium complex.  相似文献   

8.
《Phytomedicine》2014,21(5):607-614
The aim of this study was to determine whether the Rehmannia glutinosa oligosaccharides (ROS) ameliorate the impaired glucose metabolism and the potential mechanism in chronic stress rats fed with high-fat diet. The rats were fed by a high-fat diet and simultaneously stimulated by chronic stress over 5 weeks. Body weight, fasting plasma glucose, intraperitoneal glucose tolerance test (IPGTT), plasma lipids, gluconeogenesis test (GGT), glycogen content, and corticosterone, insulin and leptin levels were measured. The results showed that ROS administration (100, 200 mg/kg, i.g.) for 5 weeks exerted the effects of increasing the organ weights of thymus and spleen, lowering the fasting plasma glucose level, improving impaired glucose tolerance, increasing the contents of liver and muscle glycogen, decreasing the gluconeogenesis ability, plasma-free fatty acid's level, as well as plasma triglyceride and total cholesterol levels in chronic stress and high-fat fed rats, especially in the group of 200 mg/kg; while the plasma corticosterone level was decreased, and plasma leptin level was increased. These results suggest that ROS exert an ameliorating effect of impaired glucose metabolism in chronic stress rats fed with high-fat diet, and the potential mechanism may be mediated through rebuilding the glucose homeostasis in the neuroendocrine immuno-modulation (NIM) network through multilinks and multitargets.  相似文献   

9.
10.
Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.  相似文献   

11.
Many patients with diabetes are not diagnosed at all or are diagnosed too late to be effectively treated, resulting in nonspecific symptoms and a long period of incubation of the disease. Pre-diabetes is an early warning signal of diabetes, and the change of urine glucose in this period has been ignored even though urine has long been related with diabetes. In this study, Zucker diabetic fatty (ZDF) rats were used to test if there were changes in urine glucose before blood glucose increases. Six 8-week-old male ZDF rats (fa/fa) and Zucker lean (ZL) rats (fa/+) were fed with Purina 5008 high-fat diet and tested for fasting blood glucose and urine glucose. After 12 weeks of feeding, the urine glucose values of the ZL rats were normal (0–10 mmol L~(-1)), but the values of the ZDF model rats increased 10 weeks before their blood glucose levels elevated. The urine glucose values of the ZDF model rats showed a state of disorder that was frequently elevated (10 mmol L~(-1)) and occasionally normal (0–10 mmol L~(-1)). This finding may provide an easy early screening for diabetes by long-term monitoring of urine glucose levels: pre-diabetes may be revealed by frequently disordered urine glucose levels over a period.  相似文献   

12.
Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose‐stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL‐treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL‐treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL‐exposed islets.  相似文献   

13.
The purpose of this study was to assess the individual and interactive effects of the antioxidant alpha-lipoic acid (LPA) and the n-6 essential fatty acid gamma-linolenic acid (GLA) on insulin action in insulin-resistant obese Zucker rats. LPA, GLA, and a unique conjugate consisting of equimolar parts of LPA and GLA (LPA-GLA) were administered for 14 days at 10, 30, or 50 mg. kg body wt(-1). day(-1). Whereas LPA was without effect at 10 mg/kg, at 30 and 50 mg/kg it elicited 23% reductions (P < 0.05) in the glucose-insulin index (the product of glucose and insulin areas under the curve during an oral glucose tolerance test and an index of peripheral insulin action) that were associated with significant increases in insulin-mediated (2 mU/ml) glucose transport activity in isolated epitrochlearis (63-65%) and soleus (33-41%) muscles. GLA at 10 and 30 mg/kg caused 21-25% reductions in the glucose-insulin index and 23-35% improvements in insulin-mediated glucose transport in epitrochlearis muscle. The beneficial effects of GLA disappeared at 50 mg/kg. At 10 and 30 mg/kg, the LPA-GLA conjugate elicited 29 and 38% reductions in the glucose-insulin index. These LPA-GLA-induced improvements in whole body insulin action were accompanied by 28-63 and 38-57% increases in insulin-mediated glucose transport in epitrochlearis and soleus muscles and resulted from the additive effects of LPA and GLA. At 50 mg/kg, the metabolic improvements due to LPA-GLA were substantially reduced. In summary, these results indicate that the conjugate of the antioxidant LPA and the n-6 essential fatty acid GLA elicits significant dose-dependent improvements in whole body and skeletal muscle insulin action on glucose disposal in insulin-resistant obese Zucker rats. Moreover, these actions of LPA-GLA are due to the additive effects of its individual components.  相似文献   

14.
We measured infarct size after coronary occlusion (30 min) and reperfusion (24 h) in genetic non-insulin-dependent Zucker diabetic fatty (ZDF) rats with and without 4-wk cholesterol feeding. Infarct size was similar in ZDF rats and lean control rats but was significantly larger in cholesterol-fed diabetic rats than in cholesterol-fed lean rats (P < 0.05). Plasma levels of glucose, insulin, and triglycerides were significantly higher in diabetic rats and were not influenced by cholesterol feeding. The increase in total plasma cholesterol induced by cholesterol feeding was significantly greater in diabetic rats than in lean rats (P < 0.05). A significant positive correlation was found between total plasma cholesterol and infarct size (P < 0.05). Myeloperoxidase activity, as an index of neutrophil accumulation, was significantly higher and expression of P-selectin was more marked in the ischemic myocardium of cholesterol-fed diabetic rats than of cholesterol-fed lean rats. Acetylcholine-induced endothelium-dependent relaxation (EDR) of aortic rings was markedly impaired in cholesterol-fed diabetic rats. Thus cholesterol feeding significantly exacerbated myocardial injury produced by coronary occlusion-reperfusion in non-insulin-dependent diabetic rats, possibly because of enhanced expression of P-selectin and impairment of EDR in the coronary bed.  相似文献   

15.
Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.  相似文献   

16.
This study aimed to investigate the antidiabetic, antilipidaemic and antioxidant activities of Citrus medica cv Diamante (Rutaceae) hydroalcoholic (CD) peel extract in Zucker diabetic fatty (ZDF) rats. The ability of CD to protect against oxidative stress was investigated by using different in vitro assays and in vivo by using the reactive oxygen metabolites-derived compounds (d-ROMs) test and the biological antioxidant potential test (BAP). Two different doses of CD extract (300 and 600?mg/kg/die) were administered at ZDF rats for 4 weeks. CD reduced cholesterol and triglycerides levels. A dose-dependent effect on body weight and serum glucose levels was observed. A decrease of d-ROMs and an increase of BAP were recorded by using the dose of 600?mg/kg. The extract inhibited lipid peroxidation (IC50 value of 0.23?mg/ml). These findings suggest as an efficient phytotherapeutic approach in combating hyperlipidaemic and hyperglycaemic disorders.  相似文献   

17.
The obese (ob) gene product leptin, secreted from adipose tissue, acts in the hypothalamus to regulate body energy stores. In vitro experiments showed that insulin increases both leptin mRNA expression and leptin secretion by adipocytes. Here, we report on the relationship between plasma insulin and plasma leptin in a longitudinal in vivo study. In Zucker diabetic fatty (ZDF) rats, an animal model for non-insulin-dependent diabetes mellitus (NIDDM), and in ZDF control rats, blood glucose, body weight, plasma insulin and plasma leptin levels were measured from 10 to 25 weeks of age. In ZDF control rats, body weight, plasma leptin and plasma insulin levels increased gradually during the study period. In ZDF rats, the time course of plasma leptin was similar to that of plasma insulin, but did not parallel that of body weight. Calculation of partial correlation coefficients revealed that in ZDF control rats plasma leptin correlated with body weight rather than with plasma insulin. However, in ZDF rats, plasma leptin correlated with plasma insulin rather than with body weight, suggesting an important role for insulin in the modulation of leptin secretion in this animal model for NIDDM.  相似文献   

18.
The effect of the vanadium complex bis[curcumino]oxovanadium (BCOV) on blood glucose level, serum lipid levels, blood pressure and vascular reactivity were studied in non-diabetic and streptozotocin-induced diabetic (STZ-diabetic) rats and compared to that of vanadyl sulfate. Blood glucose level, serum lipid levels, and blood pressure were significantly increased in STZ-diabetic rats. Vascular reactivity to various agonists such as noradrenaline and acetylcholine were significantly increased in STZ-diabetic rats. Blood glucose and serum lipid levels were restored to normal in STZ-diabetic animals treated with vanadyl sulfate at a concentration of 0.5 mmol/kg/day (p.o.). However, vanadyl sulfate at a concentration of 0.2 mmol/kg/day (p.o.) did not produce any significant change in blood glucose and lipid levels. There was no significant effect of vanadyl sulfate (0.2 or 0.5 mmol/kg/day) treatment on blood pressure and vascular reactivity in STZ-diabetic rats. Vanadyl sulfate significantly reduced the body weight of non-diabetic and STZ-diabetic rats. Moreover, it also caused severe diarrhea in both groups of animals. Treatment with BCOV (0.05, 0.1 and 0.2mmol/kg/day, p.o.) significantly decreased blood glucose level and serum lipids in STZ-diabetic rats. Furthermore, administration of BCOV to STZ-diabetic rats restored the blood pressure and vascular reactivity to agonists to normal. There was no significant change in the body weight of BCOV treated non-diabetic and STZ-diabetic rats. Diarrhea was not observed in both BCOV treated groups. In conclusion, the present study shows that the vanadium complex BCOV has antidiabetic and hypolipedimic effects. In addition, it improves the cardiovascular complications associated with diabetes.  相似文献   

19.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

20.
Ichnocarpus frutescence (L.) R.Br. is an evergreen plant and many preparations have been used in traditional Indian medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. In the present study we prepared various extracts of I. frutescence (IF) leaves which were tested against streptozotocin-induced diabetic rats. IF leaf methanolic extract (IFLMExt) showed significant plasma glucose lowering effect. Therefore, we prepared IFLMExt, which was tested against different types of glycemia (normal, glucose-fed hyperglycemic and streptozotocin-induced diabetic rats) for their potential to induce insulin secretion and cellular insulin responses. Fasting plasma glucose (FPG) levels were determined at different doses and times following treatment with IFLMExt or with vehicle in normal, glucose fed-hyperglycemic and diabetic rats. Oral administration of IFLMExt led to a significant blood glucose-lowering effect in glucose-fed hyperglycemic and diabetic rats. The hypoglycemic effect was observed at doses of 100 and 200 mg/(kg bw) after 6 and 2 h administration, respectively, in glucose-fed hyperglycemic rats. The maximum effect of IFLMExt was detected at 2 h with 200 mg/(kg bw) in diabetic animals and this profile was maintained for the next 6 h (37.23%) but increased after that at 24 h. Oral administration of IFLMExt daily for 45 days to diabetic rats significantly reduced the FPG (54.5%) to near normal. After 7 days of streptozotocin administration plasma insulin decreased in diabetic controls compared to normal controls. Treatment with IFLMExt significantly prevented the decrease in plasma insulin levels from day 0 to 45 in comparison to diabetic controls. Oral administration of n-hexane fraction led to a significant glucose-lowering effect in diabetic rats (54.50%). Histopathological examination showed that IFLMExt extract protected the pancreatic tissue from streptozotocin-induced damage enormously. Oral administration of IFLMExt extract and n-hexane fraction to normal and streptozotocin-induced diabetic rats decreased plasma glucose levels without hypoglycemic effect. The results suggest that methanolic extract and n-hexane fraction of IF may provide new therapeutic avenues against diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号