首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   

2.
3.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.  相似文献   

4.
The increased accumulation of activated microglia containing amyloid β protein (Aβ) around senile plaques is a common pathological feature in subjects with Alzheimer's disease (AD). Much less is known, however, of intracellular signal transduction pathways for microglial activation in response to Aβ. We investigated intracellular signaling in response to Aβ stimulation in primary cultured rat microglia. We found that the kinase activity of PKC-δ but not that of PKC- or - is increased by stimulation of microglia with Aβ, with a striking tyrosine phosphorylation of PKC-δ. In microglia stimulated with Aβ, tyrosine phosphorylation of PKC-δ was evident at the membrane fraction without an overt translocation of PKC-δ. PKC-δ co-immunoprecipitated with MARCKS from microglia stimulated with Aβ. Aβ induced translocation of MARCKS from the membrane fraction to the cytosolic fraction. Immunocytochemical analysis revealed that phosphorylated MARCKS accumulated in the cytoplasm, particularly at the perinuclear region in microglia treated with Aβ. Taken together with our previous observations that Aβ-induced phosphorylation of MARCKS and chemotaxis of microglia are inhibited by either tyrosine kinase or PKC inhibitors, our results provide evidence that Aβ induces phosphorylation and translocation of MARCKS through the tyrosine kinase-PKC-δ signaling pathway in microglia.  相似文献   

5.
Bradbury DA  Corbett L  Knox AJ 《FEBS letters》2004,560(1-3):30-34
Here we studied the role of phosphoinositide 3-kinase (PI 3-kinase) and mitogen activated protein (MAP) kinase in regulating bradykinin (BK) induced prostaglandin E2 (PGE2) production in human pulmonary artery smooth muscle cells (HPASMC). BK increased PGE2 in a three step process involving phospholipase A2 (PLA2), cyclooxygenase (COX) and PGE synthase (PGES). BK stimulated PGE2 release in cultured HPASMC was inhibited by the PI 3-kinase inhibitor LY294002 and the p38 MAP kinase inhibitor SB202190. The inhibitory mechanism used by LY294002 did not involve cytosolic PLA2 activation or COX-1, COX-2 and PGES protein expression but rather a novel effect on COX enzymatic activity. SB202190 also inhibited COX activity.  相似文献   

6.
Reflectance Fourier transform infrared (FT-IR) microspectroscopy was applied to study the prevention of β-sheet formation of amyloid β (Aβ)(1–40) peptide by co-incubation with a hexapeptide containing a KLVFF sequence (Aβ(15–20) fragment). Second-derivative spectral analysis was used to locate the position of the overlapping components of the amide I band of Aβ peptide and assigned them to different secondary components. The result indicates that each intact sample of Aβ(15–20) fragment or Aβ(1–40) peptide previously incubated in distilled water at 37 °C transformed their secondary structure from 1649 (1651) or 1653 cm−1 to 1624 cm−1, suggesting the transformation from -helix and/or random coil structures to β-sheet structure. By co-incubating both samples with different molar ratio in distilled water at 37 °C, the structural transformation was not found for Aβ(1–40) peptide after 24 h-incubation. But the β-sheet formation of Aβ(1–40) peptide after 48 h-incubation was evidenced from the appearance of the IR peak at 1626 cm−1 by adding a little amount of Aβ(15–20) fragment. There was no β-sheet formation of Aβ(1–40) peptide after addition with much amount of Aβ(15–20) fragment, however, suggesting the higher amount of Aβ(15–20) fragment used might inhibit the β-sheet formation of Aβ(1–40) peptide. The more Aβ(15–20) fragment used made the more stable structure of Aβ(1–40) peptide and the less β-sheet formation of Aβ(1–40) peptide. The study indicates that the reflectance FT-IR microspectroscopy can easily evidence the prevention of β-sheet formation of Aβ(1–40) peptide by a short amyloid fragment.  相似文献   

7.
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology.  相似文献   

8.
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.  相似文献   

9.
Emerging evidence indicates that amyloid β peptide (Aβ) initially induces subtle alterations in synaptic function in Alzheimer disease. We have recently shown that Aβ binds to β(2) adrenergic receptor (β(2)AR) and activates protein kinase A (PKA) signaling for glutamatergic regulation of synaptic activities. Here we show that in the cerebrums of mice expressing human familial mutant presenilin 1 and amyloid precursor protein genes, the levels of β(2)AR are drastically reduced. Moreover, Aβ induces internalization of transfected human β(2)AR in fibroblasts and endogenous β(2)AR in primary prefrontal cortical neurons. In fibroblasts, Aβ treatment also induces transportation of β(2)AR into lysosome, and prolonged Aβ treatment causes β(2)AR degradation. The Aβ-induced β(2)AR internalization requires the N terminus of the receptor containing the peptide binding sites and phosphorylation of β(2)AR by G protein-coupled receptor kinase, not by PKA. However, the G protein-coupled receptor kinase phosphorylation of β(2)AR and the receptor internalization are much slower than that induced by βAR agonist isoproterenol. The Aβ-induced β(2)AR internalization is also dependent on adaptor protein arrestin 3 and GTPase dynamin, but not arrestin 2. Functionally, pretreatment of primary prefrontal cortical neurons with Aβ induces desensitization of β(2)AR, which leads to attenuated response to subsequent stimulation with isoproterenol, including decreased cAMP levels, PKA activities, PKA phosphorylation of serine 845 on α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor subunit 1 (GluR1), and AMPA receptor-mediated miniature excitatory postsynaptic currents. This study indicates that Aβ induces β(2)AR internalization and degradation leading to impairment of adrenergic and glutamatergic activities.  相似文献   

10.
Chronic infection of hepatitis C virus (HCV) leads to hepatic fibrosis and subsequently cirrhosis, although the underlying mechanisms have not been established. Previous studies have indicated that the binding of HCV E2 protein and CD81 on the surface of hepatic stellate cells (HSCs) lead to the increased protein level and activity of matrix metallopeptidase (MMP) 2, indicating that E2 may involve in the HCV-induced fibrosis. This study was designed to investigate the involvement of HCV E2 protein in the hepatic fibrogenesis. Results showed that E2 protein may promote the expression levels of α-smooth muscle actin (α-SMA) and collagen α(I). Furthermore, several pro-fibrosis or pro-inflammatory cytokines, including transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF), interleukin (IL)-6 and IL-1β, were significantly increased in E2 transfected-HSC cell lines, while the expression of MMP-2 are also considerably increased. Moreover, the significant increases of CTGF and TGF-β1 in a stable E2-expressing Huh7 cell line were also observed the same results. Further molecular studies indicated that the impact of E2 protein on collagen production related to higher production of ROS and activated Janus kinase (JAK)1, JAK2 and also enhance the activation of ERK1/2 and p38, while catalase and inhibitors specific for JAK, ERK1/2, and p38 abolish E2-enhanced expression of collagen α(I). Taken together, this study indicated that E2 protein involve in the pathogenesis of HCV-mediated fibrosis via an up-regulation of collagen α(I) and oxidative stress, which is JAK pathway related.  相似文献   

11.
Co-injection of wortmannin (inhibitor of phosphatidylinositol-3 kinase, PI3K) and GF109203X(inhibitor of protein kinase C, PKC) into the rat brain was found to induce spatial memory deficiency and enhance tau hyperphosphorylation in the hippocampus of rat brain. To establish a cell model with durative Alzheimer-like tau hyperphosphorylation in this study, we treated N2a neuroblastoma cells with wortmannin and GF109203X separately and simultaneously, and measured the glycogen synthase kinase 3 (GSK-3)activity by y-32p-labeling and the level of tau phosphorylation by Western blotting. It was found that the application of wortmannin alone only transitorily increased the activity of GSK-3 (about 1 h) and the level of tau hyperphosphorylation at Ser^396/Ser^404 and Ser^199/Ser^202 sites (no longer than 3 h); however, a prolonged and intense activation of GSK-3 (over 12 h) and enhanced tau hyperphosphorylation (about 24 h) were observed when these two selective kinase inhibitors were applied together. We conclude that the simultaneous inhibition of PI3K and PKC can induce GSK-3 overactivation, and further strengthen and prolong the Alzheimerlike tau hyperphosphorylation in N2a cells, suggesting the establishment of a cell model with early pathological events of Alzheimer‘s disease.  相似文献   

12.
We previously demonstrated that the oxysterol potentiation of arachidonic acid release and prostaglandin biosynthesis induced by foetal calf serum activation of normal rat kidney (NRK) cells (fibroblastic clone 49F) was not related to a direct effect of oxysterols on cell free Ca2+ level. Since both Ca2+ variations and protein C are involved in arachidonic acid release in some models, we looked for a possible modulation by protein C in the oxysterol effect on arachidonic acid release. We show that when the phorbol ester 12-O-tetradecanoyl-phorbol-13acetate (TPA), a protein kinase C activator, was added to the culture medium, the oxyterol effect on arachidonic acid release and prostaglandin synthesis clearly increased. Moreover, the effect of TPA was dose-dependent and TPA EC50 (4 × 10−9 M) was unchanged in the presence of the oxysterol. Preincubation of cells with TPA for 24 h prevented the arachidonic acid release induced by TPA alone, whereas the oxysterol effect was decreased but not abolished. In the absence of serum, TPA and ionomycin added together induced the same noticeable (arachidonic acid) release and PGE2 synthesis as serum alone. Nevertheless, the potentiating effect of cholest-5-ene-3β,25-diol was much higher when serum itself was used to activate NRK cells than it was in the present serum-mimicking experimental conditions. Thus, the presence of growth factors is probably required to obtain a full oxysterol effect. We conclude that the oxysterol effect was synergistic with, but not fully dependent on, protein kinase C and Ca2+ ion fluxes, therefore oxysterols could affed earlier events triggered by serum growth factor binding to their cell membrane receptors.  相似文献   

13.
The high-affinity interaction between protein kinase inhibitor (PKI)(6-22)amide(Thr6-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly- Arg-Arg-Asn- Ala-Ile22-NH2) and the catalytic subunit of cAMP-dependent protein kinase requires both the N-terminal Thr6 to Ile11 sequence of the inhibitor peptide and its C-terminal pseudosubstrate site comprised of Arg15 to Ile22. Small angle X-ray scattering data indicate that PKI(6-22)amide has a compact, rather than extended, structure in solution (Reed J et al., 1989, Biochem J 264:371-380). CD spectroscopic analysis of the PKI peptide led to the suggestion that a beta-turn structure might be located in the -Ala12-Ser-Gly-Arg15-connecting sequence in the middle of the molecule (Reed J, Kinzel V, Cheng HC, Walsh DA, 1987, Biochemistry 26:7641-7647). To investigate this possibility further, conformationally constrained and flexible analogs of PKI(6-22)amide were synthesized and used to study the structure-function relationships of this central portion of the inhibitor. (Des12-14)PKI(6-22) amide exhibited over a 200-fold loss in inhibitory activity. Replacement of the omitted -Ala12-Ser-Gly14-sequence with aminocaprylic acid yielded an analog that regained more than 90% of the lost binding energy. The D-alanine14 PKI analog was as potent as the parent peptide, whereas the beta-alanine14 and the sarcosine14 analogs were only 10-fold less active. Several peptides that promoted a beta-turn structure at residues 12-15 showed about 200-fold decreases in inhibitory activity. Two constrained analogs that could not assume a beta-turn conformation were only 30-fold less potent than PKI(6-22)amide. Thus, the structure of the central connecting portion of the PKI peptide, encompassing residues 12-15, greatly influences its ability to effectively bind to and inhibit the catalytic subunit. We conclude, however, that a formal beta-turn at this position is not required and is actually detrimental for a high-affinity interaction of PKI(6-22)amide with the enzyme. These results are interpreted in light of the Fourier-transform infrared spectra of the peptide analogs and the crystal structure of the peptide bound at the active site of the protein kinase (Knighton DR et al., 1991b, Science 253:414-420).  相似文献   

14.
Recently we proposed that COX-2 induction precedes expression of HO-1 in ischemic preconditioned rat brain. In the current study, we investigated the molecular mechanism by which prostaglandin E2, one of COX-2 metabolites, induces HO-1 in rat C6 brain cells. We demonstrated that concentration of PGE2 increased HO-1 expression in C6 cells in vitro. The effects of PGE2 were mimicked by PGE2 receptor EP2 agonists, 11-deoxy PGE2, and cAMP analog, dibutyl-cAMP. HO-1 expression by PGE2 was inhibited by LY294002, PI3K inhibitor and H89, PKA inhibitor. The EP2-specific antagonist, AH8006 also inhibited PGE2-mediated HO-1 expression in a concentration-dependent manner. Finally, PGE2 inhibited GOX-induced apoptosis as assayed by FACS analysis or DNA strand breaks assay, and this cell death was reversed by ZnPPIX, HO-1 inhibitor. In addition to HO-1 induction, PGE2 also increased phosphorylation of Bad by PKA- and PI3K-depednent manner. Taken together, we conclude that PGE2 induces HO-1 protein expression through PKA and PI3K signaling pathways via EP2 receptor in C6 cells. The induction of HO-1 along with increase of p-Bad by PGE2 is responsible for anti-apoptosis against oxidant stress.  相似文献   

15.
In chick skeletal muscle cell primary cultures, we previously demonstrated that 1alpha,25(OH)2-vitamin D3 [1alpha,25(OH)2D3], the hormonally active form of vitamin D, increases the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2, their subsequent translocation to the nucleus and involvement in DNA synthesis stimulation. In this study, we show that other members of the MAP kinase superfamily are also activated by the hormone. Using the muscle cell line C2C12 we found that 1alpha,25(OH)2D3 within 1 min phosphorylates and increases the activity of p38 MAPK. The immediately upstream mitogen-activated protein kinase kinases 3/6 (MKK3/MKK6) were also phosphorylated by the hormone suggesting their participation in p38 activation. 1Alpha,25(OH)2D3 was able to dephosphorylate/activate the ubiquitous cytosolic tyrosine kinase c-Src in C2C12 cells and studies with specific inhibitors imply that Src participates in hormone induced-p38 activation. Of relevance, 1alpha,25(OH)2D3 induced in the C2C12 line the stimulation of mitogen-activated protein kinase activating protein kinase 2 (MAPKAP-kinase 2) and subsequent phosphorylation of heat shock protein 27 (HSP27) in a p38 kinase activation-dependent manner. Treatment with the p38 inhibitor, SB203580, blocked p38 phosphorylation caused by the hormone and inhibited the phosphorylation of its downstrean substrates. 1Alpha,25(OH)2D3 also promotes the phosphorylation of c-jun N-terminal protein kinases (JNK 1/2), the response is fast (0.5-1 min) and maximal phosphorylation of the enzyme is observed at physiological doses of 1alpha,25(OH)2D3 (1 nM). The relative contribution of ERK-1/2, p38, and JNK-1/2 and their interrelationships in hormonal regulation of muscle cell proliferation and differentiation remain to be established.  相似文献   

16.
In vitro effects of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, calphostin C (PKC inhibitor) and okadaic acid [OA, a protein phosphatase (PP; PP1 and PP2A) inhibitor] on 2-hydroxyestradiol-17β (2-OHE2)-induced oocyte maturation were investigated in the catfish Heteropneustes fossilis. Incubations of postvitellogenic follicles with PMA or OA alone did not induce oocyte maturation. However, co-incubations with 2-OHE2 and PMA (0.05, 0.5 and 5 μM) or 2-OHE2 and OA (0.5, 1.0 or 2.0 μM) increased germinal vesicle breakdown (GVBD) significantly over that of 2-OHE2. Incubation of follicles with calphostin C elicited varied effects on GVBD, low (0.005 and 0.01 μM) and high (5.0 and 10.0 μM) concentrations did not affect GVBD, but medium concentrations (0.05, 0.1, 0.5, 1.0 and 2.5 μM) stimulated it. The medium concentrations elicited a biphasic stimulatory response with peak GVBD at 0.1 μM (54%). Calphostin C (≥ 2.5 μM) inhibited the 2-OHE2-induced GVBD in a concentration-dependent manner during the 24 h incubation. Pre- or post-treatment with calphostin C inhibited the steroid-induced GVBD only at 6 h. In co-incubation studies, both PMA and OA reversed the inhibitory effect of calphostin C: the former partially and the latter fully. The results of the present study show that PKC appears to modulate the 2-OHE2-induced oocyte maturation. The OA-sensitive PP may be involved in the PKC modulation of steroid-induced oocyte maturation.  相似文献   

17.
BACKGROUND: Offspring of women with diabetes are at increased risk for congenital malformations and disturbed growth compared with infants from nondiabetic pregnancies. The precise biological process behind these effects is not yet completely clarified. Previous studies have suggested that diabetic embryopathy is associated with increased level of oxidative stress and disturbed arachidonic acid metabolism. The aim of the present study was to investigate whether a diabetes-like environment both in vivo and in vitro increases embryonic levels of isoprostanes and alters embryonic prostaglandin E(2) (PGE(2)) concentration. Furthermore, we studied whether vitamin E and folic acid treatment rectify such alterations. METHODS: Embryos from diabetic and nondiabetic rats at gestational days (GDs) 10 and 11 were used. In the in vitro experiments, we used whole embryo culture, which mimics pregnancy. GD 9 embryos from nondiabetic rats were cultured for either 24 hr (corresponding to GD 10) or 48 hr (corresponding to GD 11) and exposed to 10 or 30 mM glucose concentration with or without folic acid. RESULTS: Embryos from diabetic rats and embryos cultured in a high glucose concentration showed increased malformation rates. Dietary treatment with vitamin E in vivo and supplementation of folic acid in the culture medium with 30 mM glucose in vitro decreased the malformation rate, decreased embryonic isoprostane levels, and increased PGE(2) concentration. CONCLUSIONS: Diabetes-induced oxidative stress and disturbance of PGE(2) production may contribute to the embryonic dysmorphogenesis in the offspring of diabetic rodents and, thereby, may also have a role in human diabetic embryopathy.  相似文献   

18.
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.  相似文献   

19.
1,25-(OH)2D3 and 24,25-(OH)2D3 mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH)2D3 which have been modified on the A-ring and C,D-ring side chain (1α-(hydroxymethyl)-3β-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YA = 3a) and 1β-(hydroxymethyl)-3α-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25-(OH)2D3 and 24,25-(OH)2D3. These hybrid analogues are only 0.1% as effective in binding to the VDR from calf thymus as 1,25-(OH)2D3. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and activity of protein kinase C (PKC) were measured after treatment with 1,25-(OH)2D3, 24,25-(OH)2D3, or the analogues. Both analogues inhibited proliferation of both cell types, as did 1,25-(OH)2D3 and 24,25-(OH)2D3. Analogue 3a had no effect on proteoglycan production by GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells. 1,25-(OH)2D3 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was increased, with 1,25-(OH)2D3 having a greater effect. 24,25-(OH)2D3 caused a significant decrease in PKC activity in matrix vesicles from RC cultures; 24,25-(OH)2D3, 3a, and 3b increased PKC activity in the plasma membrane fraction, however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation–dependent. By studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Biochem. 66:457–470, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The steroid hormone 1α,25(OH)2–vitamin D3 (1α,25(OH)2D3) generates biological responses in intestinal and other cells via both genomic and rapid, nongenomic signal transduction pathways. We examined the hypothesis that 1α,25(OH)2D3 action in chick enterocytes may be linked to pathways involving tyrosine phosphorylation. Brief exposure of isolated chick enterocytes to 1α,25(OH)2D3 demonstrated increased tyrosine phosphorylation of several cellular proteins (antiphosphotyrosine immunoblots of whole cell lysates) with prominent bands at 42–44, 55–60, and 105–120 Kda. The 42–44 Kda bands comigrated with mitogen-activated protein (MAP) kinase (immunoblotting with anti-MAP kinase antibody) The response occurred within 30 s, peaked at 1 min, and was dose-dependent (0.01–10 nM), with maximal stimulation at 1 nM (three- to fivefold). This effect was specific for 1α,25(OH)2D3 since its metabolic precursors 25(OH)D3and vitamin D3 did not increase MAP kinase tyrosine phosphorylation. The tyrosine kinase inhibitor, genistein, blocked 1α,25(OH)2D3-induced tyrosine phosphorylation of MAP kinase, while staurosporine, a PKC inhibitor, attenuated the hormone's effects by 30%. We have evaluated the ability of 1α,25(OH)2D3 analogs, which have complete flexibility around the 6,7 carbon-carbon bond (6F) or which are locked in either the 6-s-cis (6C) or the 6-s-trans(6T) shape(s), to activate MAP kinase. Thus, two 6F and one 6C analog stimulated while one 6T analog did not stimulate MAP kinase tyrosine phosphorylation. In addition, 1β,25(OH)2D3, a known antagonist of 1α,25(OH)2D3-mediated rapid responses, blocked the hormone effects on MAP kinase. We conclude that 1α,25(OH)2D3 and analogs which can achieve the 6-s-cis shape (6F and 6C) can increase tyrosine phosphorylation and activation of MAP kinase in chick enterocytes. J. Cell. Biochem. 69:470–482, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号