首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively labelled by unilateral tract implants of DiI. The earliest ipsilaterally projecting ganglion cells are located in the dorsal central retina. The first sign of the adult pattern of distribution of ganglion cells with uncrossed axons located mainly in the ventrotemporal retina is seen on embryonic day 16.5, thus showing that the adult line of decussation forms early in development. A small number of labelled cells continue to be found in nasal and dorsal retina at all later stages. At early stages (E14-15), retrogradely labelled uncrossed fibres are found in virtually all fascicles of the developing nerve, intermingling with crossed axons throughout the length of the nerve. At later stages of development (E16-17), although uncrossed fibres pass predominantly within the temporal part of the stalk, they remain intermingled with crossed axons. A significant number of uncrossed axons also lie within the nasal part of the optic stalk. The position of uncrossed fibres throughout the nerve in the later developmental stages is comparable to that seen in the adult rodent (Baker and Jeffery, 1989). The distribution of uncrossed axons thus indicates that positional cues are not sufficient to account for the choice made by axons when they reach the optic chiasm.  相似文献   

2.
P Godement  J Salaün  C A Mason 《Neuron》1990,5(2):173-186
In the developing mammalian visual system, retinal fibers grow through the optic chiasm, where one population crosses to the opposite side of the brain and the other does not. Evidence from labeling growing retinal axons with the carbocyanine dye Dil in mouse embryos indicates that the two subpopulations diverge at a zone along the midline of the optic chiasm. At the border of this zone, crossed fibers grow directly across, whereas uncrossed fibers turn back, developing highly complex terminations with bifurcating and wide-ranging growth cones. When one eye is removed at early stages, uncrossed fibers from the remaining eye stall at the chiasm midline. These results suggest that crossed and uncrossed retinal fibers respond differently to cues along the midline of the chiasm and that the uncrossed fibers from one eye grow along crossed fibers from the other eye, both guidance mechanisms contributing to the establishment of the bilateral pattern of visual projections in mammalian brain.  相似文献   

3.
Components of the peripheral visual pathway were examined in two bottlenose dolphins, Tursiops truncatus, each with unilateral ocular degeneration and scarring of 3 or more years' duration. In both animals, the optic nerve associated with the blind eye right eye in Tg419 and left eye in Tt038 had a translucent, gel-like appearance upon gross examination. This translucency was also evident in the optic tract contralateral to the affected eye. In Tg419, myelinated axons of varying diameters were apparent in the left optic nerve, whereas the right optic nerve, serving the blind eye, appeared to be devoid of axons. In Tt038, myelinated axons were associated with the right optic nerve (serving the functional eye) and left optic tract but were essentially absent in the left optic nerve and right optic tract. Examined by light microscopy in serial horizontal sections, the optic chiasm of Tt038 was arranged along its central plane in segregated, alternating pathways for the decussation of right and left optic nerve fibers. Ventral to this plane, the chiasm was comprised of fibers from the left optic nerve, whereas dorsal to the central plane, fibers derived from the right optic nerve. Because of this architectural arrangement, the right and left optic nerves grossly appeared to overlap as they crossed the optic chiasm with the right optic nerve coursing dorsally to the left optic nerve. At the light and electron microscopic levels, the optic nerves and tracts lacking axons were well vascularized and dominated by glial cell bodies and glial processes, an expression of the marked glial scarring associated with postinjury axonal degeneration. The apparent absence of axons in one of the optic tract pairs (right in Tt038 and left in Tg419) supports the concept of complete decussation of right and left optic nerve fibers at the optic chiasm in the bottlenose dolphin. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The role of dying cells in the optic stalk in relation to retinal fiber migration was investigated in the chick embryo. Cell death was analysed at various stages of development by counting pycnotic nuclei and also by the Gomori acid phosphatase reaction, while nerve fibers were visualised by the Bodian method. A wave of cell death, beginning in the neural retina at stage 18 and advancing with time through the stalk towards the diencephalon, occurred simultaneously or slightly prior to differentiation and migration of ganglion cell axons. Cell death stopped and gliogenesis occurred in the stalk after penetration by retinal fibers. Cell death occurred in the stalk even when fiber penetration was prevented by optic cup ablation. In this case, necrosis ensued until almost complete degeneration of the stalk, usually within three days after the operation, and gliogenesis did not occur. As the stalk degenerated, its cells became heavily pigmented. These observations suggest that the onset of cell death in the optic stalk is determined prior to and independently of retinal fiber penetration. On the other hand, cessation of cell death and subsequent gliogenesis occur only in the presence of ingrowing optic fibers.  相似文献   

5.
The optic disc develops at the interface between optic stalk and retina, and enables both the exit of visual fibres and the entrance of mesenchymal cells that will form the hyaloid artery. In spite of the importance of the optic disc for eye function, little is known about the mechanisms that control its development. Here, we show that in mouse embryos, retinal fissure precursors can be recognised by the expression of netrin 1 and the overlapping distribution of both optic stalk (Pax2, Vax1) and ventral neural retina markers (Vax2, Raldh3). We also show that in the absence of Bmp7, fissure formation is not initiated. This absence is associated with a reduced cell proliferation and apoptosis in the proximoventral quadrant of the optic cup, lack of the hyaloid artery, optic nerve aplasia, and intra-retinal misrouting of RGC axons. BMP7 addition to organotypic cultures of optic vesicles from Bmp7-/- embryos rescues Pax2 expression in the ventral region, while follistatin, a BMP7 antagonist, prevents it in early, but not in late, optic vesicle cultures from wild-type embryos. The presence of Pax2-positive cells in late optic cup is instead abolished by interfering with Shh signalling. Furthermore, SHH addition re-establishes Pax2 expression in late optic cups derived from ocular retardation (or) embryos, where optic disc development is impaired owing to the near absence of SHH-producing RGC. Collectively, these data indicate that BMP7 is required for retinal fissure formation and that its activity is needed, before SHH signalling, for the generation of PAX2-positive cells at the optic disc.  相似文献   

6.
The ventral region of the chick embryo optic cup undergoes a complex process of differentiation leading to the formation of four different structures: the neural retina, the retinal pigment epithelium (RPE), the optic disk/optic stalk, and the pecten oculi. Signaling molecules such as retinoic acid and sonic hedgehog have been implicated in the regulation of these phenomena. We have now investigated whether the bone morphogenetic proteins (BMPs) also regulate ventral optic cup development. Loss-of-function experiments were carried out in chick embryos in ovo, by intraocular overexpression of noggin, a protein that binds several BMPs and prevents their interactions with their cognate cell surface receptors. At optic vesicle stages of development, this treatment resulted in microphthalmia with concomitant disruption of the developing neural retina, RPE and lens. At optic cup stages, however, noggin overexpression caused colobomas, pecten agenesis, replacement of the ventral RPE by neuroepithelium-like tissue, and ectopic expression of optic stalk markers in the region of the ventral retina and RPE. This was frequently accompanied by abnormal growth of ganglion cell axons, which failed to enter the optic nerve. The data suggest that endogenous BMPs have significant effects on the development of ventral optic cup structures.  相似文献   

7.
Freshwater planarians can regenerate a brain, including eyes, from the anterior blastema, and coordinately form an optic chiasm during eye and brain regeneration. To investigate the role of the netrin- and slit-signaling systems during optic chiasm formation, we cloned three receptor genes (Djunc5A, Djdcc and DjroboA) expressed in visual neurons and their ligand genes (DjnetB and Djslit) and analyzed their functions by RNA interference (RNAi). Although each of DjroboA(RNAi), Djunc5A(RNAi) and DjnetB(RNAi) showed a weak phenotype and Djslit(RNAi) showed a severe defect of eye formation, we did not observe any defect of crossing of visual axons over the midline among single knockdown planarians. However, among double knockdown planarians, some of DjnetB(RNAi);DjroboA(RNAi) and Djunc5A(RNAi);DjroboA(RNAi) showed complete disconnection between the visual axons from the two sides, suggesting that some combination of netrin- and robo-mediated signals may be required for crossing over the midline. Finally, we carefully investigated the distribution patterns of cells expressing DjNetB protein, DjnetB, and Djslit at the early stage of regeneration, and found that visual axons projected along a path sandwiched between DjNetB protein and Djslit-positive cells. These results suggest that two different collaborative or combinatory signals may be required for midline crossing at the early stage of chiasm formation during eye and brain regeneration.  相似文献   

8.
Berry  M.  Carlile  J.  Hunter  A.  Tsang  W.-L.  Rosustrel  P.  Sievers  J. 《Brain Cell Biology》1999,28(9):721-741
We have studied axon regeneration through the optic chiasm of adult rats 30 days after prechiasmatic intracranial optic nerve crush and serial intravitreal sciatic nerve grafting on day 0 and 14 post-lesion. The experiments comprised three groups of treated rats and three groups of controls. All treated animals received intravitreal grafts either into the left eye after both left sided (unilateral) and bilateral optic nerve transection, or into both eyes after bilateral optic nerve transection. Control eyes were all sham grafted on day 0 and 14 post-lesion, and the optic nerves either unlesioned, or crushed unilaterally or bilaterally. No regeneration through the chiasm was seen in any of the lesioned control optic nerves. In all experimental groups, large numbers of axons regenerated across the optic nerve lesions ipsilateral to the grafted eyes, traversed the short distal segment of the optic nerve and invaded the chiasm without deflection. Regeneration was correlated with the absence of the mesodermal components in the scar. In all cases, axon regrowth through the chiasm appeared to establish a major crossed and a minor uncrossed projection into both optic tracts, with some aberrant growth into the contralateral optic nerve. Axons preferentially regenerated within the degenerating trajectories from their own eye, through fragmented myelin and axonal debris, and reactive astrocytes, oligodendrocytes, microglia and macrophages. In bilaterally lesioned animals, no regeneration was detected in the optic nerve of the unimplanted eye. Although astrocytes became reactive and their processes proliferated, the architecture of their intrafascicular processes was little perturbed after optic nerve transection within either the distal optic nerve segment or the chiasm. The re-establishment of a comparatively normal pattern of passage through the chiasm by regenerating axons in the adult might therefore be organised by this relatively immutable scaffold of astrocyte processes. Binocular interactions between regenerating axons from both nerves (after bilateral optic nerve transection and intravitreal grafting), and between regenerating axons and the intact transchiasmatic projections from the unlesioned eye (after unilateral optic nerve lesions and after ipsilateral grafting) may not be important in establishing the divergent trajectories, since regenerating axons behave similarly in the presence and absence of an intact projection from the other eye.  相似文献   

9.
Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk and the expression of guidance cues at this choice point are necessary for the exit of RGC axons out of the eye. Sonic hedgehog (Shh) has been implicated in both patterning of ocular tissue and direct guidance of RGC axons. Here, we examine the precise spatial and temporal requirement for Hedgehog (Hh) signaling for intraretinal axon pathfinding and show that Shh acts to pattern the optic stalk in zebrafish but does not guide RGC axons inside the eye directly. We further reveal an interaction between the Hh and chemokine pathways for axon guidance and show that cxcl12a functions downstream of Shh and depends on Shh for its expression at the optic disc. Together, our results support a model in which Shh acts in RGC axon pathfinding indirectly by regulating axon guidance cues at the optic disc through patterning of the optic stalk.  相似文献   

10.
Accumulating evidence suggests that Sonic hedgehog (Shh) signaling plays a crucial role in eye vesicle patterning in vertebrates. Shh promotes expression of Pax2 in the optic stalk and represses expression of Pax6 in the optic cup. Shh signaling contributes to establishment of both proximal–distal and dorsal–ventral axes by activating Vax1, Vax2, and Pax2. In the dorsal part of the developing retina, Bmp4 is expressed and antagonizes the ventralizing effects of Shh signaling through the activation of Tbx5 expression in chick and Xenopus. To examine the roles of Shh signaling in optic cup formation and optic stalk development, we utilized the Smoothened (Smo) conditional knockout (CKO) mouse line. Smo is a membrane protein which mediates Shh signaling into inside of cells. Cre expression was driven by Fgf15 enhancer. The ventral evagination of the optic cup deteriorated from E10 in the Smo-CKO, whereas the dorsal optic cup and optic stalk develop normally until E11. We analyzed expression of various genes such as Pax family (Pax2/Pax6), Vax family (Vax1/Vax2) and Bmp4. Bmp4 expression was greatly upregulated in the optic vesicle by the 21-somite stage. Then Vax1/2 expression was decreased at the 20- to 24-somite stages. Pax2/6 expression was affected at the 27- to 32-somite stages. Our data suggest that the effects of the absence of Shh signaling on Vax1/Vax2 are mediated through increased Bmp4 expression throughout the optic cup. Also unchanged patterns of Raldh2 and Raldh3 suggest that retinoic acid is not the downstream to Shh signaling to control the ventral optic cup morphology.  相似文献   

11.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

12.
13.
Dorso-ventral and proximo-distal axis formation of the optic cup is apparent from early stages of development. Pax6 is initially detectable in the optic vesicle and later shows a distal-high and proximal-low gradient of expression in the retina. To determine the early role of Pax6 in pattern formation of the optic cup, we expressed Pax6 ectopically in the optic vesicle of stages 9-10 chick embryos by in ovo electroporation, which resulted in a small eye-like phenotype. The signaling molecule fibroblast growth factor (FGF)8, which appears to be restricted to the central retina, was increased, whereas bone morphogenetic protein (BMP)4 and Tbx5, two dorsal markers, were down-regulated in Pax6-electroporated eye. Pax6 overexpression also decreased the expression of the ventral marker Vax. Electroporation with a dominant-negative form of Pax6 resulted in a decrease in FGF8 expression, but BMP4 expression was unaffected initially while it was diminished later. Our data suggest a new role for Pax6 in regulating FGF8 and BMP4 expression during pattern formation of the optic cup, and that a Pax6-regulated balance between FGF8 and BMP4 is critical for retinogenesis.  相似文献   

14.
During normal in vivo development, the optic stalk gives rise only to macroglial cells. When we cultured optic stalks isolated from their immediate in situ environment, we found that optic stalks obtained from embryos at Theiler stages 16 to 19 gave rise to both neurons and glial precursor cells, whereas optic stalks obtained from embryos at stages 20 to 23 gave rise to only glial precursor cells. Between stages 19 and 20 (a period of 12 hr of development) the optic stalk changes from a pseudostratified to a simple epithelium, and concomitant with these changes is the growth of the neural retinal axons along the optic stalk. An attractive hypothesis to explain these observations is that the environmental cues that restrict the differentiation capability of the optic stalk ventricular cell population in vivo emanate from the retinal axons. Whether this is due to a restriction in the differentiation capability of a pleuripotential ventricular cell or to a selective cell death of a subpopulation of ventricular cells already committed to the neuronal lineage of differentiation is not yet resolved.  相似文献   

15.
The spatial and temporal distribution as well as ultrastructural and biochemical characteristics of apoptotic and mitotic cells during human eye development were investigated in 14 human conceptuses of 4-9 postovulatory weeks, using electron and light microscopy. In the 5th developmental week, apoptotic and mitotic cells were found in the neuroepithelium of the optic cup and stalk, being the most numerous at the borderline between the two layers of the optic cup, and at the place of transition of the optic cup into stalk. They were also found at the region of detachment of the lens pit from the surface ectoderm. In the later developmental stages (the 6th-the 9th week), apoptotic and mitotic cells were observed in the neural retina and the anterior lens epithelium. Throughout all stages examined, mitotic cells were found exclusively adjacent to the lumen either of the intraretinal space or the optic stalk ventricle, or were restricted to the superficial epithelial layer of the lens primordium. Unlike mitotic cells, apoptotic cells occurred throughout the whole width both of the neuroepithelium and the surface epithelium. Ultrastructurally, apoptotic cells were characterised by round- or crescent-shaped condensations of chromatin near the nuclear membrane, while in the more advanced stages of apoptosis by apoptotic bodies. The distribution of caspase-3-positive cells coincided with the location of apoptotic cells described by morphological techniques indicating that the caspase-3-dependent apoptotic pathway operates during the all stages of human eye development. The location of cells positive for anti-apoptotic bcl-2 protein was in accordance with the regions of eye with high mitotic activity, confirming the role of bcl-2 in protecting cells from apoptosis. In the earliest stage of eye development, apoptosis and mitosis might be associated with the sculpturing of the walls of optic cup and stalk, while high mitotic activity along the intraretinal space and optic stalk ventricle indicates its role in the gradual luminal closure. These processes also participate in the detachment of the lens pit epithelium from the surface ectoderm as well as in further closure of the lens vesicle. Later on, both processes seem to be involved in the neural retina differentiation, lens morphogenesis and secondary lens fibre differentiation.  相似文献   

16.
17.
Although glial cells have been implicated widely in the formation of axon tracts in both insects and vertebrates, their specific function appears to be context-dependent, ranging from providing essential guidance cues to playing a merely facilitory role. Here we examine the role of the retinal basal glia (RBG) in photoreceptor axon guidance in Drosophila. The RBG originate in the optic stalk and have been thought to migrate into the eye disc along photoreceptor axons, thus precluding any role in axon guidance. Here we show the following. (1) The RBG can, in fact, migrate into the eye disc even in the absence of photoreceptor axons in the optic stalk; they also migrate to ectopic patches of differentiating photoreceptors without axons providing a continuous physical substratum. This suggests that glial cells are attracted into the eye disc not through haptotaxis along established axons, but through another mechanism, possibly chemotaxis. (2) If no glial cells are present in the eye disc, photoreceptor axons are able to grow and direct their growth posteriorly as in wild type, but are unable to enter the optic stalk. This indicates that the RBG have a crucial role in axon guidance, but not in axonal outgrowth per se. (3) A few glia close to the entry of the optic stalk suffice to guide the axons into the stalk, suggesting that glia instruct axons by local interaction.  相似文献   

18.
19.
Vax2 is a homeobox gene whose expression is confined to the ventral region of the prospective neural retina. Overexpression of this gene at early stages of development in Xenopus and in chicken embryos determines a ventralisation of the retina, thus suggesting its role in the molecular pathway that underlies eye development. We describe the generation and characterisation of a mouse with a targeted null mutation of the Vax2 gene. Vax2 homozygous mutant mice display incomplete closure of the optic fissure that leads to eye coloboma. This phenotype is not fully penetrant, suggesting that additional factors contribute to its generation. Vax2 inactivation determines dorsalisation of the expression of mid-late (Ephb2 and Efnb2) but not early (Pax2 and Tbx5) markers of dorsal-ventral polarity in the developing retina. Finally, Vax2 mutant mice exhibit abnormal projections of ventral retinal ganglion cells. In particular, we observed the almost complete absence of ipsilaterally projecting retinal ganglion cells axons in the optic chiasm and alteration of the retinocollicular projections. All these findings indicate that Vax2 is required for the proper closure of the optic fissure, for the establishment of a physiological asymmetry on the dorsal-ventral axis of the eye and for the formation of appropriate retinocollicular connections.  相似文献   

20.
With the use of quantitative histological techniques, we have described, in normal mice, the formation of a system of intercellular channels within the embryonic retina and continuing without interruption into the optic stalk. The channels develop in advance of the morphological differentiation of the retinal ganglion cells and their neurites. Moreover, they appear at predictable times during gestation and are localized along the potential route to be taken by the earliest developing fibers of the optic nerve. A functional relationship may exist between the development of the channels and the subsequent outgrowth of the optic nerve from the eye. We have also examined a series of mouse embryos homozygous for the mutant gene ocular retardation (orJ), which causes optic nerve aplasia. In the orJ mutant, there is a reduction in area of these extracellular spaces and the optic nerve fails to exit from the eye. The lack of intercellular space within the mutant retina is associated with an increased number of cells which, in turn, may result from a continuing absence of normal cell death during earlier stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号