首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular-mechanics calculations have been carried out on the base-paired hexanucleoside pentaphosphates d(TATATA)2, d(ATATAT)2, d(A6)·d(T6), d(CGCGCG)2, d(GCGCGC)2, and d(C6)·d(G6) in both A- and B-DNA geometries. The calculated relative energies of these polymers are consistent with the relative stabilities of the polymers found experimentally. In particular, the results of our calculations support the observation that the homopolymer d(A)n·d(T)n is more stable in a B-DNA conformation, while the homopolymer d(G)n·d(C)n is more stable in an A-DNA conformation. The molecular interactions responsible for these differential stabilities include both inter- and intrastrand base stacking, as well as base–phosphate interactions. While definitive experiments on the heteropolymer stabilities have not yet been carried out, the results of our calculations also suggest a greater stability of the purine-3′,5′-pyrimidine sequence over the pyrimidine-3′,5′-purine sequence in both the A- and B-conformations. The reason for this greater stability lies in the importance of the inherent directionality (5′ → 3′ vs 3′ → 5′) of phosphate–base and base–base interactions. The largest conformation change observed on energy refinement is sugar repuckering, which occurs mainly on pyrimidine-attched sugars and only in the B-DNA geometry. We suggest a molecular mechanism, specifically, differential base–sugar steric interactions involving neighboring sugars, to explain why this repuckering occurs more with d(A6)·d(T6) than with other isomers.  相似文献   

3.
Abstract

The nonexchangeable base and sugar protons of the octanucleotide d(ACCCGGGT)2 have been assigned using two dimensional homonuclear Hartmann-Hahn relayed spectroscopy (HOHAHA), double quantum filtered homonuclear correlation spectroscopy (DQFCOSY) and nuclear Overhauser spectroscopy (NOESY) in D2O at 12°C. The observed NOE's between the base protons and their own H2′ protons and between the base protons and the H2′ protons of the 5′adjacent nucleotide and the observed coupling constants between the deoxyribose 1′ and 2′,2″ protons indicate that this duplex assumes a right-handed B-type helix conformation in solution.  相似文献   

4.
Abstract

Assignment of the 1H and 31P NMR spectra of a phosphorodithioate modified oligonucleotide decamer duplex, d(CGCTTpS? 2AAGCG)2 (10-mer-S; a site of dithioate substitution is designated with the symbols pS? 2), was achieved by two-dimensional homonuclear TOCSY, NOES Y and 1H-31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. In contrast to the parent palindromic decamer sequence (1) which has been shown to exist entirely in the duplex B-DNA conformation under comparable conditions (100 mM KCI), the dithiophosphate analogue forms a hairpin loop. However, the duplex form of the dithioate oligonucleotide can be stabilized at lower temperatures, higher salt and strand concentration. The solution structure of the decamer duplex was calculated by an iterative hybrid relaxation matrix method (MORASS) combined with 2D NOESY-distance restrained molecular dynamics. These backbone modified compounds, potentially attractive antisense oligonucleotide agents, are often assumed to possess similar structure as the parent nucleic acid complex. Importantly, the refined structure of the phosphorodithioate duplex shows a significant deviation from the parent unmodified, phosphoryl duplex. An overall bend and unwinding in the phosphorodithioate duplex is observed. The structural distortion of the phosphorodithioate duplex was confirmed by comparison of helicoidal parameters and groove dimensions. Especially, the helical twists of the phosphorodithioate decamer deviate significantly from the parent phosphoryl decamer. The minor groove width of phosphorodithioate duplex 10-mer-S varies between 8.4 and 13.3 Å which is much wider than those of the parent phosphoryl decamer d(CGCTTAAGCG)2 (4.2~9.4Å). The larger minor groove width of 10-mer-S duplex contributes to the unwinding of the backbone and indicates that the duplex has an overall A-DNA-like conformation in the region surrounding the dithiophosphate modification.  相似文献   

5.
D J Patel  L Shapiro  D Hare 《Biopolymers》1986,25(4):693-706
The base and sugar protons of the d(G-G-T-A-T-A-C-C) duplex have been assigned from two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements in D2O solution at 25°C. The nucleic acid protons have been assigned from NOEs between protons on adjacent bases on the same and partner strands, as well as from NOEs between the base protons and their own and 5′-flanking H1′, H2′, H2″, H3′, and H4′ sugar protons. These assignments are confirmed from coupling constant and NOE connectivities within the sugar protons of a given residue. Several of these NOEs exhibit directionality and demonstrate that the d(G-G-T-A-T-A-C-C) duplex is a right-handed helix. The relative magnitude of the NOEs between the base protons and the sugar H2′ protons of its own and 5′-flanking sugar demonstrate that the TATA segment of the d(G-G-T-A-T-A-C-C) duplex adopts a B-DNA type helix geometry in solution, in contrast to the previous observation of a A-type helix for the same octanucleotide duplex in the crystalline state.  相似文献   

6.
Abstract

The crystal and molecular structure of sodium deoxyinosine monophosphate (5′-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Å, b = 9.206(3) Å and c = 12.770(6) Å. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2′ endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3′ atom, a feature observed in many crystal structures of sodium salts of nucleotides.  相似文献   

7.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

8.
E Trotta  M Paci 《Nucleic acids research》1998,26(20):4706-4713
The solution structure of the complex between 4', 6-diamidino-2-phenylindole (DAPI) and DNA oligomer [d(GCGATTCGC)]2, containing a central T.T mismatch, has been characterized by combined use of proton one- and two-dimensional NMR spectroscopy, molecular mechanics and molecular dynamics computations including relaxation matrix refinement. The results show that the DAPI molecule binds in the minor groove of the central region 5'-ATT-3' of the DNA oligomer, which predominantly adopts a duplex structure with a global right-handed B-like conformation. In the final models of the complex, the DAPI molecule is located nearly isohelical with its NH indole proton oriented towards the DNA helix axis and forming a bifurcated hydrogen bond with the carbonyl O2 groups of a mismatched T5 and the T6 residue of the opposite strand. Mismatched thymines adopt a wobble base pair conformation and are found stacked between the flanking base pairs, inducing only minor local conformational changes in global duplex structure. In addition, no other binding mechanisms were observed, showing that minor groove binding of DAPI to the mismatch-containing site is favoured in comparison with any other previously reported interaction with G.C sequences.  相似文献   

9.
Abstract

The crystal structure of 5′-amino-5′-deoxyadenosine (5′-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P212121 with a=7.754(3)Å, b=8.065(l)Å and c=32.481(2)Å. This nucleoside shows a syn conformation about the glycosyl bond and C2′-endo-C3′-exo puckering for the ribose sugar. The orientation of N5′ atom is gauche-trans about the exocyclic C4′-C5′ bond. The amino nitrogen N5′ forms a trifurcated hydrogen bond with N3, O9T and 04′ atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.  相似文献   

10.
Abstract

LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2′-0, 4′-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional'H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32Å. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3Å. The average twist over the sequence are 35.9° ± 0.3°. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5′-CTLAG-3′ site than in the unmodified 5′-CTLAG-3′ site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   

11.
Abstract

We use internal coordinate molecular mechanics calculations to study the impact of abasic sites on the conformation and the mechanics of the DNA double helix. Abasic sites, which are common mutagenic lesions, are shown to locally modify both the groove geometry and the curvature of DNA in a sequence dependent manner. By controlled twisting and bending, it is also shown that these lesions modify the deformability of the duplex, generally increasing its flexibility, but again to an extent which depends on the nature of the abasic site and on the surrounding base sequence. Both the conformational and mechanical influence of this type of DNA damage may be significant for recognition and repair mechanisms.  相似文献   

12.
The conformational transition of r(CpG)3 was investigated under different chemical conditions. It was found that NaCl at a high concentration induced a partial transformation of the duplex into another conformation of RNA, whereas MgCl2 and LiCl at concentrations of 2.3 and 5.4 M, respectively, caused the complete transition from A-RNA to the new conformation. 31P-NMR spectra measured in 5.0 M LiCl confirmed the conclusion that A-RNA was transformed into another conformation which at 70°C was apparently melted to single-stranded RNA. An increase in MgCl2 concentration to 0.5 M caused an apparent increase in the stability of the duplex. It was established that apolar alcohols did not influence the duplex conformation but, at 78% (vv), they caused the aggregation of the duplex. Trifluoroethanol and urea at 78% and 10 M, respectively, caused the melting of the duplex due to the breakage of the hydrogen bonds within the duplex. It was suggested that r(CpG)3 formed a right-handed helix which under extreme conditions was transformed into another conformation and it was presumed that it might be a left-handed Z-RNA.  相似文献   

13.
Abstract

A new, convenient, and short synthesis of 2′-deoxyshowdomycin, along with an improved procedure for the preparation of showdomycin, have been presented. A single-crystal X-ray structure of l-benzyl-2′-deoxyshowdomycin (9) has been reported. Conformational studies using C.D. indicated that showdomycin exists predominantly in an anti conformation in aqueous solution. Molecular mechanics calculations using AMBER point to comparable binding energy of showdomycin-adenosine pair with the natural uridine-adenosine pair, but with a significant base-ribose conformational deviation from the natural array in the former. Implications of such a conformational deviation on tumor and viral replications have been discussed. Base-pairing studies employing high resolution NMR spectroscopy indicate that both showdomycin and epishowdomycin base-pair with adenosine-5′-monophosphate (AMP); however, while showdomycin also shows evidence of stacking, that was absent in epishowdomycin. Molecular modeling studies using QUANTA/CHARMm show that showdomycin is capable of forming a homopolymer duplex by base-pairing with poly(A), but with a considerably broader and deeper major groove. A heteropolymer duplex with a single insert of showdomycin exhibits tighter coiling at the point of insertion. A ten-picosecond dynamics simulation of the above heteroduplex revealed relaxation of the helix with disruption of H- bonding for two base pairs on either side of the insertion point forming a large central cavity.  相似文献   

14.
The uranyl(VI)-mediated photocleavage of a Drew–Dickerson sequence oligonucleotide (5′-dGATCACGCGAATTCGCGT) either as the (self-complementary) duplex or cloned into the BamH1 site of pUC19 has been studied. At pH 6.5 in acetate buffer relatively enhanced photocleavage is observed at the 3′-end of the AATT sequence corresponding to maximum cleavage across the minor groove in the A/T tract. Thus maximum cleavage correlates with minimum minor groove width in the crystal structure and also with the largest electronegative potential according to computations. Using plasmid constructs with cloned inserts of the type [CGCG(A/T4)]n, we also analysed all possible sequence combinations of the (A/T)4 tract and in all cases we observed maximum uranyl-mediated photocleavage across the minor groove in the (A/T)4 tract without any significant differences between the various sequences. From these results we infer that DNA double helices of all (A/T)4 sequences share the same narrow minor groove helix conformation.  相似文献   

15.
Abstract

Molecular mechanics calculations and molecular dynamics simulations have been used to study the binding of the partially inserted major groove complex of A-[Ru(1,10-phenanthroline)3]2+ with DNA. Energy refinements of this complex showed a clear preference for binding at purine-3′,5′-pyrimidine sites over pyrimidine-3′,5′-purine sites. The basis for this difference is shown to be a slight change in the binding orientation induced by interchanging the purine and pyrimidine bases. This in turn provides for a better secondary interaction with the helix backbone at a point beyond the immediate binding site. It is this secondary interaction that provides the additional energetic stabilisation for complexes formed at purine-3′,5′-pyrimidine sites. Molecular dynamics simulations including explicit representation of solvent support these conclusions and provide an insight into the positional stability of the ligand at a particular site. Repuckering of specific deoxyribose rings to the C3′-endo conformation seems to be an important feature of the DNA/ligand complex.  相似文献   

16.
Intermolecular molecular mechanics energy calculations have been carried out for doxorubicin interacting with two dinucleotide dimer sequences. The preferred mode of intercalation is in the minor groove with the anthraquinone ring of the drug nearly perpendicular to the base pairs for the (CpG) sequence having alternate C3′ endo-C2′ endo sugar ring puckering. The preferred intercalation conformation of the drug is nearly identical to the N-bromacetyldaunomycin crystal structure. This prediction is qualitatively consistent with the recently reported crystal structure of a d(CpGpCpGpCpG) dimer-daunomycin complex. For the other dinucleotide sequence, (TpC-ApG), minor groove intercalation is also preferred, but the drug conformation can be changed.  相似文献   

17.
The nonbonded interaction energy of disaccharides, mannobiose and galactobiose and polysaccharides mannan and galactan have been computed as a function of dihedral angles (?,ψ). The conformation (40°, ?20°) has been preferred for the mannan chain from nonbonded interaction energy considerations. The O5…O3′ type of intramolecular hydrogen bond has been found to be possible in the above conformation. Comparison of the allowed region of mannan with those of cellulose and xylan indicates that the monomer unit, in mannan chain has slightly higher freedom of rotation than that of cellulose and less than that of xylan. As in cellulose and mannan, the freedom of rotation of the monomer units in β-1,4′ galactan is highly restricted. Unlike mannan (which prefers an extended conformation) the β-1,4′ galactan prefers a helical conformation similar to amylose. Just as in amylose the O2…O3′ type hydrogen bond between contiguous residues is also possible in β-1,4′ galactan.  相似文献   

18.
The crystal and molecular structure of a tri-O-ethylamylose polymorph, TEA 3, has been solved by stereochemical conformation and packing analysis, combined with X-ray fibre diffraction analysis. The unit cell is orthorhombic, space group P212121, with a  15.36 (±0.03) Å, b  12.18 (±0.05) Å, and c (fibre repeat)  15.48 (±0.01) Å. The actual chain conformation is a 43 helix with the EtO-6 group in the tg position, as was found in the polymorph TEA 1.  相似文献   

19.
The three-dimensional structure was determined by x-ray crystallography for d(T[p](CE)T), a uv photoproduct of the cyanoethyl (CE) derivative of d(TpT), having the cis-syn cyclobutane (CB) geometry and the S-configuration at the chiral phosphorus atom. The crystals of C23H30N5O12P · 2H2O belong to the orthorhombic space group P212121 (Z = 4), with cell dimensions a = 11.596 Å, b = 14.834 Å, and c = 15.946 Å, containing two water molecules per asymmetric unit. The CB ring is puckered with a dihedral angle of 151°. The two pyrimidine bases are rotated by –29° from the position of direct overlap of their corresponding atoms. This represents a major distortion of DNA, since in DNA adjacent thymines are rotated by +36°. The pyrimidine rings are puckered with Cremer–Pople parameters for T[p] and in parentheses [p]T: Q: 0.24 Å (0.31 Å); θ: 123° (120°); ?: 141° (86°). These represent half-chairs designated as 6H1 (T[p]) and 6H5 ([p]T). The CB and pyrimidine ring conformations are interrelated, and we postulate that they execute a coupled interconversion in solution. The T[p] segment has the syn glycosyl conformation, a 2T3 sugar pucker, and gauche? conformation at C4′-C5′; the [p]T segment is anti, 3T4, trans. The C5′-O5′ torsion of the [p]T unit is –124.5°, and the C3′-O3′ torsion of the T[p] unit is –152.9°. Bond angles and bond lengths involving the phosphorus atom are similar to those of other phosphotriesters. The P-O3′ and P-05′ torsion angles are –138.1° and 58.6°, respectively. Several intermolecular (but no intramolecular) hydrogen bonds are found in the crystal.  相似文献   

20.
Abstract

The molecular and crystal structure of 2′(R)-mercapto-2′-deoxyneplanocin A, C11H13N5O2S M.W.=279.32, has been determined by X-ray analysis. The space group is P212121 with a=10.322(1), b=22.870(2), c=5.273(1)Å and z=4. The structure was solved by direct method, and least-squares refinement using 1806 reflections with |Fo| > 30(F) led to the final R value of 0.045. The sugar C(2′) atom is displaced by 0.35Å opposite to the base N(9), i.e., C(2′)-exo conformation and the torsion angle about the N(9)-C(1) bond is 26.3(4)° (anti conformation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号