首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-HER-3 antibody was used for the first time in a disposable immunosensor based on indium tin oxide (ITO) substrate for HER-3 quantification. Anti-HER-3 was immobilized onto ITO substrate by 3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde. This highly sensitive immunosensor was capable of detecting concentrations of HER-3 down to the femtogram/ml level by investigating changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). Construction of ITO layers was carefully investigated using a broad range of techniques such as voltammetry, EIS, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Meanwhile, in an immunosensor system, the “single frequency impedance” technique was first used for characterization of interaction between HER-3 and anti-HER-3. Eventually, the proposed ITO-based immunosensor was applied to artificial serum samples spiked with HER-3.  相似文献   

2.
The hybrid system obtained by conjugating the protein azurin, which is a very stable and well-described protein showing a unique interplay among its electron transfer and optical properties, with 20-nm sized gold nanoparticles has been investigated. Binding of azurin molecules to gold nanoparticle surface results in the red shift of the nanoparticle resonance plasmon band and in the quenching of the azurin single tryptophan fluorescence signal. These findings together with the estimate of the hydrodynamic radius of the composite, obtained by means of Dynamic Light Scattering, are consistent with the formation of a monolayer of protein molecules, with preserved natural folding, on nanoparticle surface. The fluorescence quenching of azurin bound molecules is explained by an energy transfer from protein to metal surface and it is discussed in terms of the involvement of the Az electron transfer route in the interaction of the protein with the nanoparticle.  相似文献   

3.
Azurin, a member of a family of copper-containing proteins involved in electron transfer called cupredoxins, demonstrates structural features similar to the variable domains of the immunoglobulin superfamily members and to various mammalian cellsurface receptors or extracellular domains of intercellular adhesion molecules. An azurin-like protein called Laz with an additional N-terminal 39 amino acid peptide known as H.8 epitope is present on the surface of gonnococci and meningococci.We demonstrate that azurin, Laz and H.8-azurin can bind with the C-terminal cleavage product MSP1-19 of merozoite surface protein 1 (MSP1) of the malarial parasite Plasmodium falciparum and significantly reduce parasitemia. Azurin and Laz alsobound strongly to HIV-1 gp120. Interestingly, azurin could not only bind to gp120 but also to the intercellular adhesion molecule ICAM-3 and the CD4 receptors of T cells, mimicking the functionality of DC-SIGN with which it also binds avidly. Furthermore,these three proteins significantly suppressed HIV-1 growth in peripheral blood mononuclear cells and such suppression appeared to be occurring at an entry stage in the infection process. The presence of both antimalarial and antiretroviral activityin azurin, H.8-azurin and Laz makes these proteins, or peptides derived from them, potential therapeutic agents in the treatment of malaria, HIV-1 infections or co-infections with both P. falciparum and HIV-1.  相似文献   

4.
The microscopic surface molecular structures and macroscopic electrochemical impedance properties of the epoxysilane monolayer and anti-Escherichia coli antibody layer on an indium-tin oxide (ITO) electrode surface were studied in this paper. Characterization of stepwise changes in microscopic features of the surfaces and electrochemical properties upon the formation of each layer were carried out using both atomic force microscopy (AFM) and electrochemical impedance spectroscopy in the presence of [Fe(CN)6](3-/4-) as a redox couple. AFM images of the self-assembled monolayer (SAM) evidenced the dense, complete, and homogeneous morphology of the epoxysilane monolayer on the ITO surface. The uniformity of the epoxysilane SAM allowed antibodies to attach to the epoxy surface groups of the silanes in a similarly uniform fashion. The effects of epoxysilane monolayer and the antibody layer on the electrochemical properties of the electrode were quantitatively analyzed in terms of double layer capacitance, electron transfer resistance, Warburg impedance and solution resistance using Randles model as the equivalent circuit. It was demonstrated that the epoxysilane monolayer and the antibody layer act as barriers for the electron transfer between the electrode surface and the redox species in the solution, resulting in most significant increases in the electron transfer resistance compared to all the electric elements. Immunoreaction with E. coli O157:H7 cells demonstrated specific recognition of the immobilized anti-E. coli antibodies as evidenced by AFM imaging and impedance spectroscopy. It was found that the binding of E. coli cells mainly affected the electron transfer resistance and Warburg impedance.  相似文献   

5.
Recent developments in single molecule force spectroscopy have allowed investigating the interaction between two redox partners, Azurin and Cytochrome C 551. Azurin has been directly chemisorbed on a gold electrode whereas cytochrome c has been linked to the atomic force microscopy tip by means of a heterobifunctional flexible cross-linker. When recording force-distance cycles, molecular recognition events could be observed, displaying unbinding forces of approximately 95 pN for an applied loading rate of 10 nN/s. The specificity of molecular recognition was confirmed by the significant decrease of unbinding probability observed in control block experiments performed adding free azurin solution in the fluid cell. In addition, the complex dissociation kinetics has been here investigated by monitoring the unbinding forces as a function of the loading rate: the thermal off-rate was estimated to be approximately 14 s(-1), much higher than values commonly estimated for complexes more stable than electron transfer complexes. Results here discussed represent the first studies on molecular recognition between two redox partners by atomic force microscopy.  相似文献   

6.
Aiming to achieve stable immobilization for a redox-active cupredoxin protein onto a gold substrate and its consequent molecular level monitoring by Scanning Tunnelling Microscopy (STM), we introduced a disulphide bridge within poplar plastocyanin, while avoiding the perturbation of its active site. We selected and modified residues Ile-21 to Cys and Glu-25 to Cys by structurally conservative mutagenesis. Optical absorption spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), and resonance raman scattering (RRS) results indicate that the active site of the Ile21Cys, Glu25Cys plastocyanin (PCSS) to a large extent retains the spectroscopic properties of the wild-type protein. Furthermore, the redox midpoint potential of the couple CuII/CuI in PCSS, determined by cyclic voltammetry was found to be +348 mV close to the wild-type value. The STM images display self-assembled PCSS molecules immobilised onto gold substrate. Moreover, the full potentiostatic control of the electron transfer reaction during STM imaging, suggests that the adsorbed molecule maintains essentially its native redox properties.  相似文献   

7.
Artificial nanopores have recently emerged as versatile tools for analyzing and sorting single molecules at high speed. However, the biological cell has already developed a large set of sophisticated protein nanopores that are able to selectively translocate all types of molecules through membranes. Therefore, hybrid devices combining artifical solid-state with biomimetic protein nanopores appear to us as a particularly promising approach to the creation of powerful diagnostic, preparative and therapeutic devices. Here, we discuss a technique, optical single-transporter recording (OSTR), in which arrays of artificial micropores and nanopores are employed to analyze protein nanopores of cellular membranes. After briefly summarizing some salient features of OSTR, the technique is compared with the electrical patch clamp method and the first results of our efforts to amalgamate optical and electrical recording are described. Finally, prospects for combining OSTR with 4Pi microscopy, single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy are discussed.  相似文献   

8.
The influence of metal nanoparticles on linear and nonlinear optical properties of surrounding organic molecules has been widely investigated, whereas much less attention has been paid to the influence of molecules on properties of nanoparticles. Here, we employ transient absorption spectroscopy to address the nonlinear optical responses of the resonantly coupled silver nanoparticle–organic dye systems and demonstrate that silver nanoparticles covered with dye molecules show enhanced and spectrally different nonlinear extinction changes from pristine nanoparticles. We identify changes of the plasmon resonance band of nanoparticles induced by excitation of surrounding dye. We attribute these exciton–plasmon coupling effects to the excitation-induced refractive index modifications of the dye layer surrounding a nanoparticle and to the back-transfer of the oscillator strength borrowed by the dye from the nanoparticle.  相似文献   

9.
We studied the far-field optical reflection contrast spectroscopy (FORCS) properties of the following system: individual Au nanospheres (radius R) immobilized above Si substrate with different thicknesses (d) SiO2 between them. We found that peaks in the FORCS red-shift exponentially with d decreasing. The near-field coupling between the Au nanosphere and its supporting substrate is revealed to contribute to this, while the coupling strength is demonstrated to decrease exponentially with a decay length of 0.30 in units of d/R. It qualitatively agrees well in magnitude with the near-field coupling between two noble metal nanoparticles consisting of a dimer. Our results demonstrate that the FORCS can provide insight into the near-field coupling, which is significant for their applications in nano-photonics, sensing, surface-enhanced spectrascopies, etc.  相似文献   

10.
We present highly transparent and conductive silver thin films in a thermally evaporated dielectric/metal/dielectric (DMD) multilayer architecture as top electrode for efficient small molecule organic solar cells. DMD electrodes are frequently used for optoelectronic devices and exhibit excellent optical and electrical properties. Here, we show that ultrathin seed layers such as calcium, aluminum, and gold of only 1 nm thickness strongly influence the morphology of the subsequently deposited silver layer used as electrode. The wetting of silver on the substrate is significantly improved with increasing surface energy of the seed material resulting in enhanced optical and electrical properties. Typically thermally evaporated silver on a dielectric material forms rough and granular layers which are not closed and not conductive below thicknesses of 10 nm. With gold acting as seed layer, the silver electrode forms a continuous, smooth, conductive layer down to a silver thickness of 3 nm. At 7 nm silver thickness such an electrode exhibits a sheet resistance of 19 Ω/□ and a peak transmittance of 83% at 580 nm wavelength, both superior compared to silver electrodes without seed layer and even to indium tin oxide (ITO). Top‐illuminated solar cells using gold/silver double layer electrodes achieve power conversion efficiencies of 4.7%, which is equal to 4.6% observed in bottom‐illuminated reference devices employing conventional ITO. The top electrodes investigated here exhibit promising properties for semitransparent solar cells or devices fabricated on opaque substrates.  相似文献   

11.
Soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a three-component enzyme system that catalyzes the conversion of methane to methanol. A reductase (MMOR), which contains [2Fe-2S] and FAD cofactors, facilitates electron transfer from NADH to the hydroxylase diiron active sites where dioxygen activation and substrate hydroxylation take place. By separately expressing the ferredoxin (MMORFd, MMOR residues 1-98) and FAD/NADH (MMOR-FAD, MMOR residues 99-348) domains of the reductase, nearly all biochemical properties of full-length MMOR are retained, except for interdomain electron transfer rates. To investigate the extent to which rapid electron transfer between domains might be restored and further to explore the modularity of MMOR, MMOR-Fd and MMOR-FAD were connected in a non-native fashion. Four different linker sequences were employed to create MMOR reversed-domain (MMOR-RD) constructs, MMOR(99-342)-linker-MMOR(2-98), with a domain connectivity observed in other homologous oxidoreductases. The optical, redox, and electron transfer properties of the four MMOR-RD proteins were characterized and compared with those of wild-type MMOR. The linker sequence plays a key role in controlling solvent accessibility to the FAD cofactor, as evidenced by perturbed flavin optical spectra, decreased FADox/FADsq redox potentials, and increased steady-state oxidase activities in three of the constructs. Stopped-flow optical spectroscopy revealed slow interdomain electron transfer (k < 0.04 s(-1) at 4 degrees C, compared with 90 s(-1) for wild-type MMOR) for all three MMOR-RD proteins with 7-residue linkers. A long (14-residue), flexible linker afforded much faster electron transfer between the FAD and [2Fe-2S] cofactors (k = 0.9 s(-1) at 4 degrees C).  相似文献   

12.
The influence of the preparation method on the structure, conduction and photoelectrochemical properties of monomeric and polymeric tetraruthenated porphyrin films on ITO glass and nanocrystalline TiO2 has been investigated. The films were characterized by STM, MAC mode SFM, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and combined electro-/photoelectrochemical techniques. The electronic diffusion coefficient D(e)C(m)2 of the films differed by three to four orders of magnitude depending on the procedure employed for the deposition process. The photoelectrochemical properties were evaluated either: by depositing the films directly on transparent ITO electrodes, under an applied bias potential and presence of O2 as electron acceptor; or by depositing the porphyrin material on nanocrystalline TiO2 in a Gr?tzel-type cell. In the first case the porphyrin films exhibited a typical p-type semiconductor behavior described by a Schottky junction model, while in the second the films behaved as a sensitizer of an n-type semiconductor. The photoelectrochemical properties of the porphyrin films and their performance as sensitizer in Gr?tzel-type cells were found to be strongly dependent on the conductivity and packing characteristics of the material. Semi-empirical calculations were performed by modified MM2 and ZINDO/S methods, in order to simulate the packing and electronic structures of the tetraruthenated porphyrin.  相似文献   

13.
Tunneling nanotubes (TNTs) are nanoscaled, F-actin containing membrane tubes that connect cells over several cell diameters. They facilitate the intercellular exchange of diverse components ranging from small molecules to organelles and pathogens. In conjunction with recent findings that TNT-like structures exist in tissue, they are expected to have important implications in cell-to-cell communication. In this review we will focus on a new function of TNTs, namely the transfer of electrical signals between remote cells. This electrical coupling is not only determined by the biophysical properties of the TNT, but depends on the presence of connexons interposed at the membrane interface between TNT and the connected cell. Specific features of this coupling are compared to conventional gap junction communication. Finally, we will discuss possible down-stream signaling pathways of this electrical coupling in the recipient cells and their putative effects on different physiological activities. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

14.
An applied dc voltage offers a means of controlling immobilization during biosensor fabrication and detection during biosensing application. We present a method to directly and continuously measure the adsorption of biomacromolecules or other polyelectrolytes, under an applied potential difference, based on optical waveguide lightmode spectroscopy (OWLS). An indium tin oxide (ITO) film of thickness ca. 10 nm coated onto a silicon titanium oxide (STO) waveguiding film serves as the working (sensing) electrode. We observe the effective refractive index of the 0th transverse electric guided mode to increase significantly in the presence of an applied potential due to charging of the interfacial double layer and, possibly, modest electrochemical oxidation. Adsorption from solution onto the ITO electrode is detected by a further increase in the effective refractive index. We achieve accurate detection by employing an optical model in which the STO and ITO layers are combined into a single waveguiding film. No improvement is found using models treating the ITO as a separate layer, either dielectric or conducting. Using this method, we find the adsorption of human serum albumin and horse heart cytochrome c to be considerably enhanced in the presence of an applied potential exceeding 1 V. We attribute this behavior to adsorption at positions on the protein molecules of complementary charge.  相似文献   

15.
The biophysical mechanism of the sense of smell, or olfaction, is still highly debated. The mainstream explanation argues for a shape-based recognition of odorant molecules by olfactory receptors, while recent investigations suggest the primary olfactory event to be triggered by a vibrationally-assisted electron transfer reaction. We consider this controversy by studying the influence of a receptor on the vibrational properties of an odorant in atomistic details as the coupling between electronic degrees of freedom of the receptor and the vibrations of the odorant is the key parameter of the vibrationally-assisted electron transfer. Through molecular dynamics simulations we elucidate the binding specificity of a receptor towards acetophenone odorant. The vibrational properties of acetophenone inside the receptor are then studied by the polarizable embedding density functional theory approach, allowing to quantify protein-odorant interactions. Finally, we judge whether the effects of the protein provide any indications towards the existing theories of olfaction.  相似文献   

16.
Azurin is a member of a group of copper-containing redox proteins called cupredoxins. Different cupredoxins are produced by different aerobic bacteria as agents of electron transfer. Recently, we demonstrated that azurin enters into J774 and several types of cancer cells leading to the induction of apoptosis. We now demonstrate that azurin is internalized in J774 or cancer cells in a temperature-dependent manner. Azurin shows preferential entry into cancer compared with normal cells. An 28-amino-acid fragment of azurin fused to glutathione S-transferase (GST) or the green fluorescent protein (GFP), which are incapable of entering mammalian cells by themselves, can be internalized in J774 or human melanoma or breast cancer cells at 37 degrees C, but not at 4 degrees C. Competition experiments as well as studies with inhibitors such as cytochalasin D suggest that azurin may enter cells, at least in part, by a receptor-mediated endocytic process. The 28-amino-acid peptide therefore acts as a potential protein transduction domain (PTD), and can be used as a vehicle to transport cargo proteins such as GST and GST-GFP fusion proteins. Another member of the cupredoxin family, rusticyanin, that has also been shown to enter J774 and human cancer cells and exert cytotoxicity, does not demonstrate preferential entry for cancer cells and lacks the structural features characteristic of the azurin PTD.  相似文献   

17.
Protein-protein interactions are driven by specific properties of the molecular surfaces. Cytochrome c, a small electron transfer protein, is involved in a number of biologically relevant interactions with macromolecular partners. Small molecules may interfere with such interactions by binding to the surface of cytochrome c. Here we investigated the possibility of weak intermolecular interactions between reduced cytochrome c and a library of 325 small molecules, using WaterLOGSY NMR spectroscopy. Specific binding was found for p-aminophenol. The solution structure of the p-aminophenol-cytochrome c adduct was determined using a combination of in silico tools and NMR-based restraints. The ligand interacts in a specific binding site on the protein surface through a combination of stacking and H-bond interactions. Small but meaningful rearrangements of the solvent-exposed side chains are observed upon ligand binding and contribute to the stabilization of the complex.  相似文献   

18.
We investigated theoretically the exciton–plasmon coupling effects on the population dynamics and the absorption properties of a hybrid nanosystem composed of a metal nanoparticle (MNP) and a V-type three-level semiconductor quantum dot (SQD), which are created by the interaction with the induced dipole moments in the SQD and the MNP, respectively. Excitons of the SQD and the plasmons of the MNP in such a hybrid nanosystem could be coupled strongly or weakly to demonstrate novel properties of the hybrid system. We also find that the gain happens in such a hybrid system, because of the coherent interaction between the SQD and the MNP. Our results show that the non-linear optical response of the hybrid nanosystem can be greatly enhanced or depressed due to the exciton–plasmon couplings.  相似文献   

19.
蛋白质在生物体内电荷转移过程中所起的作用迄今仍然是一个有争议的问题.其争论焦点是蛋白质在生物电荷转移过程中是否提供特殊的电子传递通道或者是仅仅作为普通的有机介质.应用飞秒时间分辨瞬态吸收光谱研究由光合细菌天线分子和平均粒径为8 nm的TiO2组装而成的超分子系统中长程电荷转移.晶体结构研究表明,光合细菌天线分子具有由多个α-脱辅基和β-脱辅基蛋白跨膜螺旋构成的双层空心柱面体结构,其中α-脱辅基蛋白跨膜螺旋构成的小环状体套于β-脱辅基蛋白跨膜螺旋构成的大环状体中.小环状体的空腔直径约为3.6 nm.光合色素细菌叶绿素和β-胡萝卜素分子处于两环之间.细菌叶绿素距离外周胞质膜最近,预计为1 nm.本研究试图将TiO2纳米颗粒部分装入光合细菌膜蛋白的腔体中,探讨细菌叶绿素与TiO2纳米颗粒间进行的光致长程电荷转移,进而揭示蛋白质在电荷转移过程中所起的作用.实验观察到细菌叶绿素B850在LH2/TiO2中的基态漂白恢复的时间常数明显地比在LH2中短,应用长程电荷转移模型,将蛋白质视为普通介电媒体,由电荷转移速率推算得到细菌叶绿素与TiO2纳米颗粒最近表面的距离为0.6 nm,表明TiO2纳米颗粒已经成功地部分装入光合细菌天线分子的空腔中.  相似文献   

20.
A novel disposable biosensor based on direct electron transfer of superoxide dismutase (SOD) was fabricated for the determination of superoxide anion. The biosensor was constructed by electrodeposition of gold nanoparticles (GNPs) on the indium tin oxide (ITO) electrode and then immobilization of SOD in silica sol–gel (SG) network in the presence of cysteine on GNPs/ITO modified electrode surface. The distribution of GNPs on ITO electrode surface was examined by scanning electron microscopy (SEM). The immobilized SOD exhibited high catalytical activity towards superoxide anion. Parameters affecting the performance of the biosensor were also investigated. A linear calibration curve was obtained over the range from 0.08 to 0.64 μM with a correlation coefficient of 0.9937. The resulted biosensors were demonstrated to possess striking analytical properties for superoxide anion determination, such as high sensitivity, good accuracy, and long-term stability. It provides a promising platform for the fabrication of disposable biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号