首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the kinetics of replacement of O2 by CO in hemoglobin in the presence and absence of organic cosolvents (methanol, ethanol, iso-propanol, n-propanol, formamide, acetamide, N-methyl-formamide) and at 10 and 25°C. Quantitative analysis of the results indicates that these cosolvents do not affect the intrinsic binding constants of ligands to the heme when hemoglobin is in the R conformation. The present results confirm the previously reported suggestion that the effects of the above cosolvents on the oxygen affinity of hemoglobin are related to effects on the T ? R conformational equilibrium.  相似文献   

2.
We studied the effects of methanol, ethanol, iso-propanol, and n-propanol on the reaction of hemoglobin with oxygen at various temperatures. The analysis of the results in terms of the Monod-Wyman-Changeux model allowed determination of the overall contribution of the alcohols to the standard enthalpy and entropy differences between the T and R states of hemoglobin. A phenomenological approach allowed us to obtain separately the contributions related to the variations of the bulk dielectric constant of the solvent (bulk electrostatic contributions) and the contributions related to other effects (non-bulk-electrostatic contributions). The values of non-bulk-electrostatic contributions to ΔΔH and ΔΔS supported the suggestion that these contributions are mainly related to protein-solvent hydrophobic interactions.  相似文献   

3.
To investigate the mode of interactions between heme metal, bound oxygen and the distal residue at the E7 site, we have measured accurate oxygen equilibrium curves, oxygen binding relaxations following temperature-jump, and electron paramagnetic resonance spectra of natural and cobalt-substituted opossum hemoglobin, which has glutamine and histidine at the E7 site of the α chain and the β chain, respectively, and compared them with those of natural and cobalt-substituted human hemoglobin, which has histidine at the E7 site of both the α and β chains.Natural opossum hemoglobin has a lower oxygen affinity, slightly smaller and pH-dependent co-operativity, a somewhat greater Bohr effect, and a smaller effect of organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate on oxygen affinity as compared to natural human hemoglobin. Upon substitution of cobalt for iron, these oxygenation characteristics of opossum hemoglobin relative to those of human hemoglobin were preserved well. The behavior of the intrinsic oxygen association constants pertaining to the four oxygenation steps (i.e. the Adair constants) upon addition of the organic phosphates or pH changes indicates that the allosteric equilibrium in opossum hemoglobin is biased towards the T state as compared with that in human hemoglobin, and that the oxygen affinity of the R structure is lower for opossum hemoglobin than for human hemoglobin. The temperature-jump kinetic data indicate that the lower oxygen affinity of opossum cobalt-hemoglobin in comparison with that of human cobalt-hemoglobin can be ascribed to a decreased oxygen association rate constant. The electron paramagnetic resonance experiments on oxy and deoxy opossum and human cobalt-hemoglobins in buffered H2O and 2H2O, including their photolysed products at a low temperature, provided the following information. The cobaltous ion of the α subunits of deoxy opossum cobalt-hemoglobin is in an environment that is similar to that for cobaltous ions of deoxy human cobalt-hemoglobin in the T state. The hydrogen bond between the bound oxygen and the residue at E7, which has been shown to exist in oxy human cobalt-hemoglobin and oxy sperm whale cobalt-myoglobin, is absent or, at least, significantly altered in the α subunits of oxy opossum cobalt-hemoglobin, probably resulting in a lower oxygen affinity. Interference by isoleucine at E11α with an oxygen molecule is suggested as an explanation for the lowered affinity of opossum iron-hemoglobin. However, no straightforward structural explanation is available for the lower oxygen affinity of the R structure and the allosteric equilibrium biased towards the T state in opossum iron-hemoglobin.  相似文献   

4.
We studied the conjugates formed between hemoglobin and sulfated or unsulfated oxidized dextran. It appears that the presence of sulfated groups favors imino bond formation between the protein and the polymer, as the average molecular size of the conjugates is larger in this case. Under neutral conditions, the oxygen-binding properties of the conjugates depend on the presence or absence of oxygen during the coupling reaction. With unsulfated dextran, oxyhemoglobin leads to conjugates with increased oxygen affinity (P 50/P 50 native hemoglobin 0.5) compared to that of free hemoglobin (P 50=4 mm Hg), whereas deoxyhemoglobin leads to conjugates with decreased oxygen affinity (P 50/P 50 native hemoglobin 3). The use of sulfated dextran reinforces this lowering in oxygen affinity, which indicates that sulfated dextran acts as a permanent macromolecular effector of hemoglobin (P 50/P 50 native hemoglobin 4). Moreover, it can be assumed that some of the linkages involve the 2,3-diphosphoglycerate binding site, as the strong effector inositol hexaphosphate has only a slight effect on the oxygen-binding properties of the conjugate prepared in the deoxy state (P 50/P 50 native hemoglobin close to 4.4 and 6, respectively, for unsulfated and sulfated conjugates). Although dextran substituted with benzenehexacarboxylic acid (BHC) leads to a low-oxygen-affinity conjugate when linked to oxyhemoglobin through amide bonds (P 50/P 50 native hemoglobin 5), oxidized dextran modified with BHC leads, with oxyhemoglobin, to a conjugate whose oxygen affinity is close to that of free hemoglobin (P 50/P 50 native hemoglobin 1.2).  相似文献   

5.
Summary The interaction of allosteric effectors (CO2, ATP, H+) with respect to the oxygen affinity of carp hemoglobin was analyzed by determining oxygen binding curves spectrophotometrically in dilute solutions of stripped hemoglobin at 20°C. The pH range studied was 6.8–8.2.P CO2 was 0, 10 and 70 mmHg (0, 1.33 and 9.3 kPa). ATP/Hb4 was 0, 8 and 24. In the presence of either CO2 or ATP, the effects of the cofactors onP 50 were as expected over the whole pH range. In contrast to other published data, each cofactor also had a significant effect onP 50 in the presence of the other cofactor. Evidence was obtained that oxylabile carbamate is formed by carp hemoglobin and that the formation of carbamate persists at a lower level in the presence of ATP. The results support the view that the binding of ATP to carp hemoglobin requires only one terminal amino group, leaving the other N-terminal of the -chain free to react with CO2.  相似文献   

6.
Recent crystallographic studies suggested that fully liganded human hemoglobin can adopt multiple quaternary conformations that include the two previously solved relaxed conformations, R and R2, whereas fully unliganded deoxyhemoglobin may adopt only one T (tense) quaternary conformation. An important unanswered question is whether R, R2, and other relaxed quaternary conformations represent different physiological states with different oxygen affinities. Here, we answer this question by showing the oxygen equilibrium curves of single crystals of human hemoglobin in the R and R2 state. In this study, we have used a naturally occurring mutant hemoglobin C (β6 Glu→Lys) to stabilize the R and R2 crystals. Additionally, we have refined the x-ray crystal structure of carbonmonoxyhemoglobin C, in the R and R2 state, to 1.4 and 1.8 Å resolution, respectively, to compare precisely the structures of both types of relaxed states. Despite the large quaternary structural difference between the R and R2 state, both crystals exhibit similar noncooperative oxygen equilibrium curves with a very high affinity for oxygen, comparable with the fourth oxygen equilibrium constant (K4) of human hemoglobin in solution. One small difference is that the R2 crystals have an oxygen affinity that is 2–3 times higher than that of the R crystals. These results demonstrate that the functional difference between the two typical relaxed quaternary conformations is small and physiologically less important, indicating that these relaxed conformations simply reflect a structural polymorphism of a high affinity relaxed state.  相似文献   

7.
Differential scanning microcalorimetry was used to study thermal stability of the ferro- and ferriforms of hemoglobin at pH 7.4 in phosphate buffer and in buffer mixtures of methanol, ethanol, 1-propanol. Denaturation of the human hemoglobin molecule composed of four subunits was cooperative transition. The thermostability of the hemoglobin forms decreased in the order of carboxyhemoglobin (TD = 82.0 degrees C) > oxyhemoglobin (71.0 degrees C) > methemoglobin (67.0 degrees C). The aliphatic alcohols as cosolvents decreased the hemoglobin stability because of loosening the structure of the globin moiety by disturbing its hydrophobic contacts and hydrogen bonds. These alcohols reduced the oxygen affinity for hemoglobin probably due to perturbation of the R<-->T equilibrium by the decreased bulk dielectric constant of the solvent. Oxyhemoglobin and methemoglobin was converted to hemichrome by high alcohol concentrations.  相似文献   

8.
We have studied the effects of organic cosolvents (monohydric alcohols and formamide) on the oxygen affinity of human fetal hemoglobin stripped of phosphates and have compared them with the effects of the same cosolvents on the oxygen affinity of human adult hemoglobin under the same experimental conditions. Our results confirm that, in fetal hemoglobin, the T in equilibrium R conformational equilibrium is more displaced toward the T conformation than in the adult form and indicate that increased electrostatic and hydrophobic protein-solvent interactions contribute to this effect. The data reported are discussed in terms of the known amino acid substitutions between the beta- and gamma-chains and an attempt is made to rationalize the results with a molecular mechanism based on the crystallographic structure of fetal deoxyhemoglobin.  相似文献   

9.
The Hb-O2 affinity and the erythropoietic response as a function of time were studied in mice treated with sodium cyanate for up to 2 months. Cyanate increased the Hb-O2 affinity in normoxic mice more than in chronically hypoxic mice. The hemoglobin concentration rose as a function of time both in normoxic and hypoxic conditions but reached higher levels in hypoxia. After 42 days of study (21 days of hypoxia) hemoglobin reached maximum levels and thereafter showed a plateau in both cyanate and control animals. It is concluded that a chronic left-shifted oxygen dissociation curve does not avoid the development of hypoxic polycythemia in mice. Moreover, prolonged cyanate administration potentiates the crythropoietic response to chronic hypoxia. Since polycythemia is an index of tissue hypoxia, the results show that the high hemoglobin affinity did not prevent tissue hypoxia in low PO2 conditions. Results showing beneficial effects of high hemoglobin oxygen affinity induced by cyanate based on acute hypoxic expositions should be cautiously interpreted with regard to their adaptive value in animals chronically exposed to natural or simulated hypoxia.Abbreviations Hb hemoglobin - NaOCN sodium cyanate - ODC oxygen dissociation curve - P 50 PO2 at which hemoglobin is half saturated with O2  相似文献   

10.
Summary The arcid bivalveBarbatia reeveana contains within its erythrocytes two hemoglobins with remarkably different structures and oxygen equilibrium properties. A tetrameric hemoglobin (M r about 60,000) with non-identical subunits (22) constitutes about 60% of the erythrocytic heme protein. This hemoglobin has a relatively low oxygen affinity (P 50=19 Torr at 20°C, pH 7.2), shows cooperativityn H=2.2, shows no Bohr effect between pH 6.8 and 7.6 and a heat of oxygenation (H) of –5.4 kcal/mole between 15 and 35°C. Its oxygen affinity appears to be insensitive to ATP.B. reeveana erythrocytes also contain another hemoglobin withM r=430,000, the largest intracellular hemoglobin known in any organism. The subunit of this hemoglobin is unusual, having aM r of 32–34,000 and two heme oxygen binding sites per polypeptide chain. The large hemoglobin has a very low oxygen affinity (P 50=33 Torr at 20°C, pH 7.2), shows slight cooperativity,n H=1.8, and no Bohr effect (Grinich and Terwilliger 1980). The H at pH 7.2 equals –2.9 kcal/mole, a low value for most hemoglobins, and its O2 affinity appears to be insensitive to ATP. The two hemoglobins ofB. reeveana, so different in their structure, are also different in their functional properties.  相似文献   

11.
Summary The presence of hemoglobin inAnisops assimilis has been demonstrated to be a vital factor in the physiology of this organism. The hemoglobin is composed of heterogeneous subunits which aggregate upon deoxygenation. This association-dissociation equilibrium confers a steep gradient (n H6) to the oxygen equilibrium curve and a low oxygen affinity (P 5040 mmHg). Oxygen bound by the hemoglobin is released into a gas bubble enabling the bug to regulate its density around that of water. Thus, energy is conserved during a dive, allowing the animal to remain in mid-water for long periods. This adaptive feature has facilitated the exploitation of an ecological niche available to few other organisms.  相似文献   

12.
The effect of calcium and magnesium ions on the oxygen equilibrium of Eisenia hemoglobin was investigated by using an automatic oxygenation apparatus. On addition of calcium chloride (20 mM, pH 7.5), oxygen affinity and cooperativity (nmax) of the hemoglobin increased markedly (p 50:3.82 mmHg, nmax :9.76). The effect of magnesium on the oxygen equilibrium was weaker than that of calcium. The top asymptotes of the oxygen equilibrium curve shifted to the left by adding cations whereas the bottom asymptotes remained almost unchanged. The free energy of heme-heme interaction (delta GR,T) also increased remarkably. These results imply the binding of calcium to Eisenia hemoglobin in the oxygenated form and its physiological role in modulating the oxygen affinity and cooperativity.  相似文献   

13.
The allosteric model of Monod et al. (1965) (MWC) has been extended to take into account the effects of subunit dissociation. The problem is formulated theoretically in terms of a general model for two allosteric species (dimers and tetramers) linked by a polymerization reaction. Relationships are presented for interpreting the dimer-tetramer association constants in terms of allosteric model parameters.Sub-cases of the general model were tested against recent experimental data on the oxygenation-linked dimer-tetramer equilibria in normal human hemoglobin and in the variant hemoglobin Kansas (β102, Asp → Thr). The objectives of these analyses were: (1) to find the simplest models capable of describing the linked dimer-tetramer equilibria in the two hemoglobin systems, and (2) to evaluate the corresponding model parameters so that allosteric properties of the two hemoglobins may be compared.In the simplest version of the model, the dimer is half of an R-state tetramer. This model was found to be excluded unequivocally by the data for both normal hemoglobin and hemoglobin Kansas when the α and β chains have equal binding affinities. When this two-state model was modified to permit non-equivalent affinities for the chains, the model could be fitted to hemoglobin Kansas, but not to hemoglobin A. A model, in which the dimers are allowed to exist in a state different from the tetramer R state, was found to be consistent with the data for hemoglobin A, with equivalent binding by the α and β chains. For hemoglobin A, the unliganded R-state tetramers have a different subunit dissociation energy from that of fully liganded R-state tetramers. The simplest model capable of describing both hemoglobin A and hemoglobin Kansas was obtained by extending this three-state model to permit (but not require) functional non-equivalence of the α and β chains. For these MWC models, unique estimates were obtained for the model parameters.The allosteric constants for tetrameric hemoglobins A and Kansas are approximately equal. The value obtained from hemoglobin A is similar to previous estimates, whereas the value for hemoglobin Kansas is lower than previously estimated (Edelstein, 1971) by approximately two orders of magnitude. The low affinity of hemoglobin Kansas tetramer does not arise from an unusually high allosteric constant favoring the T-state species. It is largely the consequence of a greatly reduced oxygen affinity of β chains in the T state, and reduced values for the ratio between affinities in the R and T states.  相似文献   

14.
Protein aggregation is a critical problem for biotechnology and pharmaceutical industries. Despite the fact that soluble proteins have been used for many applications, our understanding of the effect of the solution chemistry on protein aggregation still remains to be elucidated. This paper investigates the process of thermal aggregation of lysozyme in the presence of various types of salts. The simple law was found; the aggregation rate of lysozyme increased with increasing melting temperature of the protein (T m) governed by chemical characteristics of additional salts. Ammonium salts were, however, ruled out; the aggregation rates of lysozyme in the presence of the ammonium salts were smaller than the ones estimated from T m. Comparing with sodium salts, ammonium salts increased the solubility of the hydrophobic amino acids, indicating that ammonium salts adsorb the hydrophobic region of proteins, which leads to the decrease in aggregation more effectively than sodium salts. The positive relation between aggregation rate and T m was described by another factor such as the surface tension of salt solutions. Fourier transform infrared spectral analysis showed that the thermal aggregates were likely to form β-sheet in solutions that give high molar surface tension increment. These results suggest that protein aggregation is attributed to the surface free energy of the solution.  相似文献   

15.
Summary The effects of both sodium chloride and CO2 on oxygen binding by component II of the hemoglobin fromArtemia franciscana have been determined. Sodium chloride decreases both the oxygen affinity and cooperativity: the Hill coefficient decreases from 2.4 to 1.7 in the presence of 0.5 M NaCl at pH 7.5, 20°C. In contrast, CO2 increases both the oxygen affinity and cooperativity. The effects of both agents are small and increase with the degree of oxygenation.  相似文献   

16.
The affinity of amino acid residues to nucleic acids is probed by measurements of melting temperatures tm for the helix–coil transition at various concentrations of amino acid amides. The increase of tm on addition of ligand is described by the equation tm = t*m + αlog(1+Ktcλ), where t*m is the melting temperature in the absence of ligand, cλ the ligand concentration, and Kt the “tm-onset” constant, which is analogous to an equilibrium constant. It is shown that Kt is closely related to the affinity of the ligands to the double helix, whereas the slope α mainly reflects the preference of the ligand binding to the helix versus the coil form. In the case of the amino acid amides, α is found to be virtually independent of the nature of the side chain with few exceptions, e. g., aromatic amides. The tm-onset constant, however, strongly depends on the nature of the amino acid side chain. For simple aliphatic amino acids, the relative free energy of binding decreases with increasing hydrophobic free energy, e.g., a high affinity is found for Gly-amide and a low affinity for Leu-amide. This relation is modified by functional groups like OH in Ser-amide. The helices poly[d(A-T)], ploy[d(I-C)]. and poly[d(A-C)]·poly[d(G-T)] exhibit similar affinity scales with relatively small variations. Our results demonstrate that the hydrophilic character of double helices at their surface disfavors binding of hydrophobic ligands unless special contacts can be formed. From our results we establish an affinity scale for the binding of amino acids to double helices.  相似文献   

17.
The effect of prostaglandin on the affinity of hemoglobin for oxygen was tested on human blood in vitro, using six different prostaglandins at several dosage levels in fresh heparinized blood from normal donors and in stored citrated blood, and using prostaglandin E2 on the blood from four seriously ill patients. No significant alterations in the affinity of hemoglobin for oxygen were dtected. A very small decrease in oxygen affinity in stored blood with high doses of prostaglandin was not statistically significant and would be of no physiologic significance even if real.We conclude that under the circumstances of this experiment prostaglandins do not alter the affinity of hemoglobin for oxygen in human whole blood in vitro.  相似文献   

18.
The effects of 2,3 diphosphoglyceric acid (2,3-DPG), adenosine triphosphate (ATP), and inositol hexaphosphate (IHP) on the oxygen affinity of whole “stripped” hemoglobin (WSH), hemoglobin H (Hb-H), hemoglobin A (Hb-A) and hemoglobin D (Hb-D) isolated from 18-day chick embryo blood have been determined. The effect of the three organic phosphates upon the oxygen dissociation curves is similar and the following order of decreasing oxygen affinity of the organic phosphates was observed for each hemoglobin: 2,3-DPG < ATP < IHP. 2,3-DPG appears to have a slightly greater effect upon the P50 of Hb-H than upon that of either of the two adult-type hemoglobins. However, this effect seems insufficient to suggest a preferential interaction of 2,3-DPG with Hb-H which would account for either the large amounts of 2,3-DPG in the erythrocytes of embryos or the higher oxygen affinity of the whole blood. The effects of the organic phosphates upon the Hill constant of the purified hemoglobins are variable. It is concluded that since the distribution of hemoglobins H, A, and D in the erythrocytes during the developmental period from 18-day embryos to 6-day chicks remains fairly constant, the previously described progressive decrease in oxygen affinity of the whole blood during this period results from changes in the total amount and distribution of the intraerythrocytic organic phosphates.2  相似文献   

19.
The DNA binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline(phen) and 4,7-diphenyl-1,10-phenanthroline(dip), [Fe(phen)(3)](2+), [Fe(phen)(2)(dip)](2+) and [Fe(phen)(dip)(2)](2+) has been characterized by spectrophotometric titration and melting temperature measurements. The salt concentration dependence of the binding constant has allowed us to dissect the DNA-binding constant and free energy change of each iron(II) complex into the nonelectrostatic and polyelectrolyte contributions. A comparison of the nonelectrostatic components in the binding free energy changes among iron(II) complexes has made it possible to rigorously evaluate the contribution of the ligand substituents to the DNA-binding event. The peripheral substitution of phen by two phenyl groups increases the nonelectrostatic binding constant of the iron(II) complex more than 20 times, which is equivalent to approximately 7.5 kJ mol(-1) of more favorable contribution to the DNA binding. In general, the iron(II) complexes studied have higher affinity towards the more facile A-T sequence than the G-C sequence. This preferential binding may be attributed to the steric effect induced by the ancillary part of the ligands in the course of DNA binding. The binding of disubstituted iron(II) complex to DNA is quite strong as reflected in the modest increase in the denaturation temperature (T(m)) of double helical DNA upon the interaction with the iron(II) complex.  相似文献   

20.
Possible problems in measuring the first Adair constant, K1, from accurate oxygen equilibrium curves have been investigated. Of these only the presence of small amounts of CO-hemoglobin or hemoglobin dimers had a significant effect. The former can be eliminated by treatment with oxygen, the latter by measuring the concentration-dependence of K1 or working at high protein concentrations. K1 values have been measured for normal hemoglobin at pH 7 and 9, hemoglobin specifically reacted with cyanate at Val 1alpha (alphac2beta2) and des(His 146beta) hemoglobin at pH 7. K1 is equal to KT, the oxygen affinity of the T state of hemoglobin, for all these hemoglobins and was increased in all of them when compared to normal hemoglobin at pH 7. This shows that the breakage of the Bohr group salt bridges by increasing pH or specific modification changes KT. Hence the Bohr group salt bridges break on ligation of the T state and are partially responsible for the free energy of cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号