首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The invasion success of introduced plants is frequently explained as a result of competitive interactions with native flora. Although previous theory and experiments have shown that plants are largely equivalent in their competitive effects on each other, competitive nonequivalence is hypothesized to occur in interactions between native and invasive species. Small overlap in resource use with unrelated native species, improved competitiveness, and production of novel allelochemicals are all believed to contribute to the invasiveness of introduced species. I tested all three assumptions in a common-garden experiment by examining the effect of plant origin and relatedness on competition intensity. Competitive interactions were explored within 12 triplets, each consisting of an invasive species, a native congeneric (or confamilial) species, and a native heterogeneric species that are likely to interact in the field. Plants were grown in pots alone or in pairs and in the absence or the presence of activated carbon to control for allelopathy. I found that competition intensity was not influenced by the relatedness or origin of competing neighbors. Although some exotic species may benefit from size advantages and species-specific effects in competitive interactions, none of the three mechanisms investigated is likely to be a principal driver of their invasiveness.  相似文献   

2.
In this study, pairs of juvenile sticklebacks either familiar with each other or pairs unfamiliar with each other met to share a food source. The study showed that sticklebacks were less aggressive towards a partner when sharing a common food source with a familiar conspecific, compared to when sharing a food source with an unfamiliar conspecific. The results showed that the aggressive behaviour was built up and broken down gradually depending on how long the two competitors had been together or apart. A decrease in aggressiveness was found after the sticklebacks had been together two weeks, with a further decrease after four weeks together. Conversely there was an increase in aggressiveness after the sticklebacks had been parted for two weeks or four weeks. The chance of food being equally distributed between the competing pairs increased with time spent together and decreased with time parted. The observed decrease or increase in the amount of aggression is discussed as a build-up or a breakdown of rank knowledge or of a co-operative partnership.  相似文献   

3.
In the absence of other limiting factors, assemblages in which species share a common, effective natural enemy are not expected to persist. Although a variety of mechanisms have been postulated to explain the coexistence of species that share natural enemies, the role of productivity gradients has not been explored in detail. Here, we examine how enrichment can affect the outcome of apparent competition. We develop a structured resource/consumer/natural enemy model in which the prey are exposed to attacks during a vulnerable life phase, the length of which depends on resource availability. With a single prey species, the model exhibits the "paradox of enrichment," with unstable dynamics at high levels of resource productivity. We extend this model to consider two prey species linked by a shared predator, each with their own distinct resource base. We derive invasion and stability conditions and examine how enrichment influences prey species exclusion and coexistence. Contrary to expectations from simpler, prey-dependent models, apparent competition is not necessarily strong at high productivity, and prey species coexistence may thus be more likely in enriched environments. Further, the coexistence of apparent competitors may be facilitated by unstable dynamics. These results contrast with the standard theory that apparent competition in productive environments leads to nonpersistent interactions and that coexistence of multispecies interactions is more likely under equilibrial conditions.  相似文献   

4.
We examined two ways in which species effects on nitrogen supply rates could influence species competitive interactions and lead to coexistence between species with very different patterns of resource use. First, through differential effects on the rates of resource cycling, species may modify resources in divergent directions to better tolerate neighbors under self-modified conditions (tolerance modification). Second, plant-induced shifts in resource supply could enhance the degree to which species can suppress individuals (suppression modification). We addressed these hypothesized mechanisms in the non-successional moist meadow alpine tundra, which is codominated by Acomastylis rossii, a slow-growing roseaceous forb with high nutrient retention that is associated with slow rates of nitrogen supply, and Deschampsia caespitosa, a graminoid with rapid growth potential that is associated with fast rates of nitrogen (N) supply. Neighbors inhibited Acomastylis transplants (the species with high N retention) less than Deschampsia transplants (the species with rapid potential growth) in both neighborhood types, and hence neighborhood type did not influence species tolerance to neighbors. Likewise, Acomastylis neighborhoods inhibited transplant growth more than Deschampsia neighborhoods regardless of transplant species identity. When N supply rates were enhanced through repeated N additions in the two neighborhood types or in the presence of each species’ litter, the inhibitory effects associated with Acomastylis were offset to a greater degree than those associated with Deschampsia, as predicted by the suppression modification. These effects appeared to be density or size-dependent, with few effects observed at low density. Our results suggest that species effects on supply rates may influence competitive interactions, particularly if these effects are complemented by other sources of temporal or spatial variation such as pulses in resource availability. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The effects of the parasitic phorid fly, Pseudacteon tricuspis Borgmeier, on the competitive interactions between the red imported fire ant, Solenopsis invicta Buren, and a native North American ant, Forelius pruinosus (Roger), were investigated in the laboratory. P. tricuspis is a highly host-specific endoparasitoid of S. invicta workers that is currently being reared and released as a biological control agent of S. invicta in the US. We tested the effect of P. tricuspis on the colony growth rate of S. invicta when S. invicta was forced to compete with F. pruinosus for a protein resource (freeze-killed crickets) in laboratory competition arenas. In addition to colony growth rate, we quantified the effect of the phorid flies on the foraging rate of S. invicta. Though S. invicta significantly reduced its foraging rate in the presence of the phorid flies, we did not detect an effect of the flies on colony growth rate. Possible explanations for these results include behavioral compensation by S. invicta for the presence of the flies. We present these laboratory results in light of a literature search indicating that laboratory tests of biological control agent efficacy are good predictors of field efficacy. We conclude that P. tricuspis alone is unlikely to suppress S. invicta populations in the field by reducing their competitive ability.  相似文献   

6.
Plant-soil feedbacks are widely recognized as playing a significant role in structuring plant communities through their effects on plant-plant interactions. However, the question of whether plant-soil feedbacks can be indirectly driven by other ecological agents, such as large herbivores, which are known to strongly modify plant community structure and soil properties, remains poorly explored. We tested in a glasshouse experiment how changes in soil properties resulting from long-term sheep grazing affect competitive interactions (intra- and inter-specific) of two graminoid species: Nardus stricta, which is typically abundant under high sheep grazing pressure in British mountain grasslands; and Eriophorum vaginatum, whose abundance is typically diminished under grazing. Both species were grown in monocultures and mixtures at different densities in soils taken from adjacent grazed and ungrazed mountain grassland in the Yorkshire Dales, northern England. Nardus stricta performed better (shoot and root biomass) when grown in grazing-conditioned soil, independent of whether or not it grew under inter-specific competition. Eriophorum vaginatum also grew better when planted in soil from the grazed site, but this occurred only when it did not experience inter-specific competition with N. stricta. This indicates that plant-soil feedback for E. vaginatum is dependent on the presence of an inter-specific competitor. A yield density model showed that indirect effects of grazing increased the intensity of intra-specific competition in both species in comparison with ungrazed-conditioned soil. However, indirect effects of grazing on the intensity of inter-specific competition were species-specific favouring N. stricta. We explain these asymmetric grazing-induced effects on competition on the basis of traits of the superior competitor and grazing effects on soil nutrients. Finally, we discuss the relevance of our findings for plant community dynamics in grazed, semi-natural grasslands.  相似文献   

7.
The Sabin oral poliovirus vaccine (OPV) readily undergoes changes in antigenic sites upon replication in humans. Here, a set of antigenically altered descendants of the three OPV serotypes (76 isolates) was characterized to determine the driving forces behind these changes and their biological implications. The amino acid residues of OPV derivatives that lie within or close to the known antigenic sites exhibited a marked tendency to be replaced by residues characteristic of homotypic wild polioviruses, and these changes may occur very early in OPV evolution. The specific amino acid alterations nicely correlated with serotype-specific changes in the reactivity of certain individual antigenic sites, as revealed by the recently devised monoclonal antibody-based enzyme-linked immunosorbent assay. In comparison to the original vaccine, small changes, if any, in the neutralizing capacity of human or rabbit sera were observed in highly diverged vaccine polioviruses of three serotypes, in spite of strong alterations of certain epitopes. We propose that the common antigenic alterations in evolving OPV strains largely reflect attempts to eliminate fitness-decreasing mutations acquired either during the original selection of the vaccine or already present in the parental strains. Variability of individual epitopes does not appear to be primarily caused by, or lead to, a significant immune evasion, enhancing only slightly, if at all, the capacity of OPV derivatives to overcome immunity in human populations. This study reveals some important patterns of poliovirus evolution and has obvious implications for the rational design of live viral vaccines.  相似文献   

8.
Introduced species negatively impact native species through competitive and trophic interactions, particularly on oceanic islands that have never been connected to any continental landmass. However, there are few studies on the relative importance of competitive interactions (resource competition with introduced species) and trophic interactions (predation or herbivory by introduced species) with respect to the negative impacts on native organisms on oceanic islands. A literature review on introduced and native species of the oceanic Ogasawara (Bonin) Islands in the western Pacific Ocean indicated that many native species (e.g., bees, beetles, damselflies, butterflies, land snails, birds, and plants) have been negatively impacted by introduced predators and herbivores (e.g., lizards, rats, flatworms, and goats). Several native plants and bees have been negatively affected by introduced competitors. However, the native species that have competed with introduced species have also suffered from either intense herbivory or predation by other introduced species. Thus, introduced predators and herbivores have had greater impacts on native species than introduced competitors in the Ogasawara Islands.  相似文献   

9.
The natural historical literature contains a considerable body of work which indicates that harvesting (or predation) can alleviate competitive instabilities. In order to arrive at an understanding of this, the appropriate bifurcation structure for a rather general family of two-dimensional competitive systems is here investigated. The results of this analysis suggest that, in more complicated ecosystems with many competing species, (1) there is a good chance that harvesting at moderate rates will increase species diversity if one species is dominant in the unharvested system, while an increase in diversity is not likely to result from harvesting from a system with no dominant species, (2) whenever harvesting does increase species diversity, maximal diversity will occur at moderate harvesting rates, with less diversity at both very high and very low harvesting rates.  相似文献   

10.
Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab ( Carcinus maenas ), an intermediate consumer (the snail, Nucella lapillus ) and a basal resource (the barnacle, Semibalanus balanoides ) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics.  相似文献   

11.
The maintenance of sexual reproduction is discussed using a model based on the familiar Lotka-Volterra competition equations. Both the equilibrium and the stability conditions that allow a sexual population to resist invasion by a single asexual clone are considered. The equilibrium conditions give results similar to previous models: When the cost of sex, within phenotype niche width, and environmental variance are low, the sexual population coexists with the asexual clone and remains at a high density. However, the asexual clone is never completely excluded. Analysis of the stability conditions shows a different picture: The introduction of an asexual clone considerably reduces the stability of the community. However, owing to its larger total niche width, the sexual population exists partly in a “competitor-free space” where the asexual clone has almost no influence on the outcome of the interactions. Therefore the asexual clone is less stable than the sexual population and has a higher probability of extinction. In contrast, the sexual population does not become extinct, since the extreme phenotypes remain at a stable, though low, density, and the central phenotypes, where stability is low, are recreated every generation through recombination. I therefore conclude that the ecological conditions under which sexual reproduction is favored over asexual reproduction are fairly easily attained and are more general than previous analyses had suggested.  相似文献   

12.
13.
Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can also exert selective pressures on fungal communities and alter the outcome of competitive fungal interactions; their potential to do so is determined by grazing intensity. Temperature regulates the abundance of soil collembola, but it remains unclear whether this will alter the top-down determination of fungal community composition. We use soil microcosms to explore the direct (via effects on interacting fungi) and indirect (by influencing top-down grazing pressures) effects of a 3 °C temperature increase on the outcomes of competitive interactions between cord-forming basidiomycete fungi. By differentially affecting the fungal growth rates, warming reversed the outcomes of specific competitive interactions. Collembola populations also increased at elevated temperature, and these larger, more active, populations exerted stronger grazing pressures. Consequently, grazing mitigated the effects of temperature on these interactions, restoring fungal communities to those recorded at ambient temperature. The interactive effects of biotic and abiotic factors are a key in determining the functional and ecological responses of microbial communities to climate change.  相似文献   

14.
15.
A hypothetical model concerning the structure of aboriginal California trophic systems is presented. The dynamics of each possible state of the system is generated theoretically and then tested using previously published data. It is determined that a state of competitive coexistence of a fish-regulated predatorprey competition relationship between the deer and human populations limited the growth of both populations and should be considered a determinant of aboriginal California population levels.  相似文献   

16.
Population dynamics and the effects of intraspecific competition on limpet growth and maintenance of bare patches were investigated for the intertidal limpet Cellana ornata (Dillwyn) at a boulder-dominated site and on a rocky platform near Kaikoura (South Island), New Zealand. Distribution and abundance patterns of C. ornata were described in relation to other biota and tidal height. C. ornata occurred almost exclusively in patches devoid of macroalgae, particularly in the mid-tidal zone. Both adult and juvenile limpets were most abundant on the tops of boulders, where their numbers were positively correlated with barnacle cover, which averaged 77%. The size structure and growth patterns of C. ornata were different between populations. Mark-recapture studies showed that the slopes of annual growth increments regressed on initial sizes were similar at both sites but that the annual increments on the platform were about 6 mm greater than on boulders. Growth virtually ceased at 27 mm for limpets at the barnacle-dominated boulder site and at 40 mm at the platform site. Recruiting cohorts had 20% survival on boulders and 37% on the platform during their first year. The largest size classes at both sites had around 57% annual survival. To test the effects of varying limpet densities on the growth and mortality of limpets and the maintenance of bare patches, densities of C. ornata were experimentally increased at both sites. Beyond a density of 4 per 0.25 m2, sizes and survival of limpets were reduced at both sites, but the effect was more pronounced at the boulder site. Limpets at the boulder site were more effective at maintaining bare space than those on the reef platform. Enclosing limpets in plots with and without barnacles showed that C. ornata and a co-occurring species (Cellana denticulata (Martyn)) grazed more effectively and had greater growth in cleared plots. Overall, there was considerable variation in the demographics of C. ornata between populations driven by site-specific characteristics.  相似文献   

17.
The evolution of mutation rates: separating causes from consequences   总被引:21,自引:0,他引:21  
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.  相似文献   

18.
The purpose of this study was to examine the effect of 3 volumes of heavy resistance, average relative training intensity (expressed as a percentage of 1 repetition maximum that represented the absolute kilograms lifted divided by the number of repetitions performed) programs on maximal strength (1RM) in Snatch (Sn), Clean & Jerk (C&J), and Squat (Sq). Twenty-nine experienced (>3 years), trained junior weightlifters were randomly assigned into 1 of 3 groups: low-intensity group (LIG; n = 12), moderate-intensity group (MIG; n = 9), and high-intensity group (HIG; n = 8). All subjects trained for 10 weeks, 4-5 days a week, in a periodized routine using the same exercises and training volume (expressed as total number of repetitions performed at intensities equal to or greater than 60% of 1RM), but different programmed total repetitions at intensities of >90-100% of 1RM for the entire 10-week period: LIG (46 repetitions), MIG (93 repetitions), and HIG (184 repetitions). During the training period, MIG and LIG showed a significant increase (p < 0.01-0.05) for C&J (10.5% and 3% for MIG and LIG, respectively) and Sq (9.5% and 5.3% for MIG and LIG, respectively), whereas in HIG the increase took place only in Sq (6.9%, p < 0.05). A calculation of effect sizes revealed greater strength gains in the MIG than in HIG or LIG. There were no significant differences between LIG and HIG training volume-induced strength gains. All the subjects in HIG were unable to fully accomplish the repetitions programmed at relative intensities greater than 90% of 1RM. The present results indicate that short-term resistance training using moderate volumes of high relative intensity tended to produce higher enhancements in weightlifting performance compared with low and high volumes of high relative training intensities of equal total volume in experienced, trained young weightlifters. Therefore, for the present population of weightlifters, it may be beneficial to use the MIG training protocol to improve the weightlifting program at least in a short-term (10 weeks) cycle of training.  相似文献   

19.
1. Solenopsis (Hymenoptera: Formicidae) fire ants are host to Pseudacteon (Diptera: Phoridae) parasitoids. The activity of S. geminata (F.) hosts and relative abundance of Pseudacteon phorids, along with five environmental variables, were measured at weekly intervals over an 8‐month period at two sites. 2. Pseudacteon relative abundances often varied greatly from week to week, and were only weakly positively correlated with S. geminata activity. 3. A quadratic function of soil temperature was the single best predictor of ant activity at both sites, explaining 32 and 73% of the variation in ant activity. A linear function of soil moisture was the single best predictor of phorid relative abundance at one site (r2 = 0.23) whereas no measured variables were significant predictors of phorid relative abundance at the other site. 4. Interspecific interactions at 600 baits were monitored at a third site to document dominance hierarchies and determine whether the presence of Pseudacteon phorids mediated interspecific interactions in their host, S. geminata. 5. Solenopsis geminata was near the top of dominance hierarchies, which did not diverge greatly from a linear pattern. Three species (S. geminata, S. invicta Buren, and Crematogaster laeviuscula Mayr) won the majority of their interspecific interactions and appear to be co‐dominants at this microhabitat‐rich site. 6. Overall, the presence of phorids had no significant effect on the outcome of interspecific contests involving S. geminata and all other ant species grouped together. Phorids may have contributed to some of the S. geminata losses against other co‐dominant species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号