首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Community level effects of predation by two invertebrate predators, the opossum shrimp (Neomysis intermedia), and the larva of the phantom midge (Chaoborus flavicans) were studied and compared. N. intermedia appeared abundantly in the shallow eutrophic Lake Kasumigaura and had a significant impact on the zooplankton community. The predation pressure by Neomysis was highest on cladocerans, followed by rotifers, and finally copepods. At high densities (maximum nearly 20 000 individuals m–2), Neomysis excluded almost all cladocerans, rotifers and copepods from the lake.Zooplankton communities were established in experimental ponds, into which C. flavicans was introduced. The predator's density was around 1 individual l–1, and was probably controled by cannibalism. Although Chaoborus larvae feed on various zooplankton species, their predation impact on zooplankton populations was markedly selective. They eliminated medium- and small-sized cladocerans and calanoid copepods from the ponds, but rotifers increased.Although the feeding selectivities of Neomysis and Chaoborus individuals were similar, the predation effects on zooplankton communities by the two predators were different.  相似文献   

2.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

3.
Predation by cyclopoid copepods is an important factor affecting zooplankton communities in freshwater habitats. Experiments provide strong evidence of the role of selective predation by cyclopoid copepods in structuring zooplankton communities. To assess the predation impact of a cyclopoid copepod, Mesocyclops pehpeiensis, we conducted a mesocosm experiment using 20-l polyethylene tanks in which the density of the predator and the food available to herbivorous zooplankton varied. M. pehpeiensis had a notable but selective effect on the zooplankton community. The population of a small cladoceran, Bosmina fatalis was affected negatively, but M. pehpeiensis did not have any apparent impact on the population dynamics of another Bosmina species, B. longirostris. On the other hand, the population of small rotifers responded positively to the presence of M. pehpeiensis, and their densities increased in mesocosms with a high density of M. pehpeiensis. It seems that suppression of B. fatalis by M. pehpeiensis predation indirectly affected rotifers by releasing them from competition with B. fatalis. The results suggest that copepod predation is a powerful factor regulating zooplankton communities directly and indirectly.  相似文献   

4.
In Lake G»rdsjön (Southwest Sweden), liming as an experimental improvement of living conditions for pelagic algae, resulted in a significant increase of algal biomass and a reduction of mean cell size. The algal development was beneficial for small sized filter feeding zooplankton, particularly rotifers, which showed a significant increase. The increase in abundance of small sized zooplankton created better food conditions for the smaller instars, and thus a much better overall survival of Chaoborus larvae. The resulting, 6–7 times larger population of Chaoborus larvae significantly changed the structure of the crustacean zooplankton community. Bosmina coregoni, the fastest swimmer of the crustacean species suffered most and was strongly reduced by the increased predation from Chaoborus. The share of cladocerans decreased, while copepods increased in importance.  相似文献   

5.
S. Sendacz 《Hydrobiologia》1984,113(1):121-127
The composition of the zooplankton of the Billings Reservoir and its variation in an eutrophic environment, subject to frequent blooms of algae (chiefly Cyanophyceae) was studied during one year (from October, 1977 to September, 1978) in two stations in the littoral and in the limnetic zone.The zooplankton community in the limnetic zone was dominated by cyclopoid copepods (Thermocyclops crassus and Metacyclops mendocinus) and by rotifers (Brachionus, Polyarthra and others) which represented, respectively 38.5 and 35.5% of the total zooplankton. At the littoral zone, cyclopoids were the most abundant (42.3%).The cladocerans were the least significant group at both stations, and calanoid copepods were found only at the littoral zone.A higher production of small filtrators, such as rotifers, cyclopoid nauplii and Bosmina sp was observed.  相似文献   

6.
7.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   

8.
We used mesocosms to analyze predation impacts on the prey populations and prey community structures by two cyclopoid copepod species, the larger Mesocyclops pehpeiensis and the smaller Thermocyclops taihokuensis, who coexist with small-sized herbivorous zooplankton species in a fish-abundant lake. The overall predation impact on the prey populations was stronger for Mesocyclops than for Thermocyclops. Mesocyclops had a strong and less selective impact on the rotifer community but a selective impact on the crustaceans. In contrast, Thermocyclops had a selective predation impact on rotifers but a weak and less selective impact on the crustacean community. As a result, the former predator reduced the diversity of the crustacean community but not the rotifer community, while the latter had an opposite impact on the diversities of the two communities. It has been suggested that fish induce development of a zooplankton community dominated by the small-sized zooplankton species in fish-abundant lakes. Our results demonstrated that cyclopoid copepods altered species composition and diversity of the small-sized zooplankton community in such lakes. Thus, the results have given an important suggestion on the role of the invertebrate predator cyclopoid copepods, which often coexist with fish, that they determine population dynamics and community structures of small-sized zooplankton in fish-abundant lakes.  相似文献   

9.
Synopsis Acará, Geophagus brasiliensis, and red-breasted bream, Tilapia rendalli, are important planktivorous cichlids in southern Brazilian lakes and reservoirs. In laboratory experiments, I quantified behavior and selectivity of different sizes of these two fish feeding on lake zooplankton. Feeding behavior depended on fish size. Fish < 30 mm were visual feeders. Fish 30–50 mm either visually fed or pump-filter fed depending on zooplankton size. Fish > 70 mm were pump-filter feeders. Replicate 1 h feeding trials revealed that, as the relative proportions of prey changed during an experiment, acará (30–42 mm, standard length) and tilapia (29–42 mm) shifted from visual feeding on large evasive copepods to filter feeding on small cladocerans and rotifers. Electivity and feeding rate increased with prey length, but were distinct for similar-sized cladocerans and copepods. Visual/filter-feeding fish had lowest electivities for small and poorly evasive rotifers and cyclopoid nauplii. They fed non-selectively on cyclopoid copepodites, had intermediate electivities for calanoid nauplii and small cladocerans, and had highest electivities for large cladocerans, cyclopoid adults, and calanoid copepodites and adults. Although belonging to different cichlid genera and native to South America and Africa, respectively, acará and red-breasted bream (= congo tilapia) exhibited similar selectivity for zooplankton. Apparently, few stereotyped feeding behaviors have evolved during the acquisition of microphagy in fish. Shift in feeding modes allows these two species to optimally exploit the variable and dynamic patchy distribution of planktonic resources.  相似文献   

10.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

11.
Cyanobacterial chemical warfare affects zooplankton community composition   总被引:5,自引:0,他引:5  
1. Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems that may be affected by algal toxins. 2. In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3. Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders, such as cyclopoid copepods, Bosmina and rotifers. 4. In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5. We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ‘sandwiched’ between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes generally comprise small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems.  相似文献   

12.
Zooplankton in the main channel of the Nakdong River and in three tributaries was sampled from June 1994 to September 1995. Planktonic rotifers (Brachionus spp., Keratella spp., and Polyarthra spp.), cyclopoid nauplii and small cladocerans (Bosmina longirostris) were numerically dominant. There was considerable longitudinal variation of zooplankton biomass in the main channel as well as spatial heterogeneity among the major tributaries. In the middle region of the main channel, between river kilometer (RK) 170 and 150 above the estuary dam, total zooplankton abundance sharply increased from less than 100 ind. L—1 to more than 1,000 ind. L—1. In a downstream direction toward the estuary dam, phytoplankton biomass increased while total zooplankton biomass decreased. However, as shown by the increasing transport of zooplankton biomass, zooplankton was diluted in the reach of the estuary dam. Advective effects from major tributaries appear to be the contributory factor for the higher zooplankton biomass in the middle region. Overall, rather the external factors (flushing, retention) than internal factors (e.g., phytoplankton) appear to be responsible for changes in zooplankton abundance toward the river mouth.  相似文献   

13.
1. An in situ enclosure experiment was conducted in a deep reservoir of southern China to examine (i) the effects of a low biomass (4 g wet weight m?3) of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community and (ii) the response of Daphnia to eutrophication. 2. In the absence of fish, Daphnia galeata dominated the zooplankton community, whereas calanoids were dominant in the fish treatments, followed by D. galeata. Silver carp stocking significantly reduced total zooplankton biomass, and that of D. galeata and Leptodorarichardi, but markedly increased the biomass of smaller cladocerans, copepod nauplii and rotifers. In contrast, nutrient enrichment had no significant effect on the plankton community except for cyclopoids. 3. Chlorophyta, Cryptophyta and Bacillariophyta were dominant phytoplankton groups during the experiment. Chlorophyta with high growth rates (mainly Chlorella vulgaris in the fish enclosures and Ankyra sp. in the fishless enclosures) eventually dominated the phytoplankton community. Total phytoplankton biomass and the biomass of edible phytoplankton [greatest axial linear dimension (GALD) < 30 μm], Chlorophyta, Cryptophyta, Bacillariophyta and Cyanobacteria showed positive responses to fish stocking, while inedible phytoplankton (GALD ≥ 30 μm) was significantly reduced in the fish enclosures. However, there was no significant effect on the plankton community from the interaction of fish and nutrients. 4. Overall, the impact of fish on the plankton community was much greater than that of nutrients. High total phosphorus concentrations in the control treatment and relatively low temperatures may reduce the importance of nutrient enrichment. These results suggest it is not appropriate to use a low biomass of silver carp to control phytoplankton biomass in warmer, eutrophic fresh waters containing large herbivorous cladocerans.  相似文献   

14.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

15.
Karl E. Havens 《Hydrobiologia》1990,198(1):215-226
During summer, Chaoborus punctipennis larval densities in the water column of fishless, eutrophic Triangle Lake become very high, and coincidently, the spined loricate rotifer Kelfcottia bostoniensis becomes the dominant zooplankter. Research was done to test the hypothesis that selective predation by Chaoborus on soft-bodied rotifers controls species dominance in the mid-summer zooplankton of this lake. In situ predation experiments showed positive selection by Chaoborus for the soft-bodied Synchaeta oblonga, negative selection for K. bostoniensis, and intermediate selection for Polyarthra vulgaris, a species with rapid escape tactics. However, during a 21 day in situ mesocosm experiment, zooplankton dominance and succession in Chaoborus-free enclosures was identical to that in enclosures with Chaoborus at lake density. Despite the selective predation, Chaoborus larvae may not exert significant top-down control on rotifers, whose intense reproductive output during mid-summer in temperate eutrophic lakes results in new individuals at rates that exceed predatory losses.  相似文献   

16.
Complementary impact of copepods and cladocerans on phytoplankton   总被引:9,自引:0,他引:9  
The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia , the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass.  相似文献   

17.
1. Variations in the light regime can affect the availability and quality of food for zooplankton grazers as well as their exposure to fish predation. In northern lakes light is particularly low in winter and, with increasing warming, the northern limit of some present-day plankton communities may move further north and the plankton will thus receive less winter light.
2. We followed the changes in the biomass and community structure of zooplankton and phytoplankton in a clear and a turbid shallow lake during winter (November–March) in enclosures both with and without fish and with four different light treatments (100%, 55%, 7% and <1% of incoming light).
3. In both lakes total zooplankton biomass and chlorophyll- a were influenced by light availability and the presence of fish. Presence of fish irrespective of the light level led to low crustacean biomass, high rotifer biomass and changes in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish.
4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers to cyclopoid copepods in the turbid lake. Light affected the phytoplankton biomass and, to a lesser extent, the phytoplankton community composition and size. However, the fish effect on phytoplankton was overall weak.
5. Our results from typical Danish shallow eutrophic lakes suggest that major changes in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century in an IPCC A2 scenario, while stronger effects may be observed in deep lakes.  相似文献   

18.
An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m-2, and lake water (containing ca. 190 g m-2 of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21–56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the (bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.  相似文献   

19.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

20.

Zooplankton play a key role in energy transfer within lake food webs, but we have a poor knowledge concerning their role as phytoplankton grazers in shallow subtropical lakes. In this study, we aimed to determine how zooplankton grazing upon phytoplankton is altered in different scenarios of fish predation and turbidity, and we explored the relevance of grazing compared to other environmental variables, to explain phytoplankton biomass changes. A mesocosm experiment was conducted by including the following treatments: fish, turbidity, fish + turbidity, and a control (without fish or varying turbidity). The experiment lasted 21 days, and samples were taken four times. Zooplankton grazing was only effective for the microphagous group upon Cryptophyceae, while large Chlorophyceae and small pennate Bacillariophyceae biomass were benefited in the presence of copepods and cladocerans, being negatively affected by depletions in nitrogen availability. In the turbidity treatment, a reduction in phytoplankton biomass was obtained, artificially increasing zooplankton grazing on phytoplankton, while fish presence inhibited grazing of adult copepods and cladocerans. The other groups of phytoplankton were only influenced by the environment. This experiment suggests that phytoplankton biomass variations would be more affected by the environment than by zooplankton grazing in shallow lakes from the Paraná River.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号