首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Synthesis of 3'-phosphoadenosine-5'-phosphosulphate from ATP and 35SO4(-2) was demonstrated by homogenates of gut. Malpighian tubules and fat body of Spodoptera littoralis. 2. The enzyme system was most active in the gut tissue, and was primarily located in the cytosol fraction of the cell. Gut cytosol preparations were used as a source of the 3'-phosphoadenosine-5'-phosphosulphate generating system for more detailed studies. 3. Maximum synthesis required an incubation mixture containing Tris/HCl buffer (pH 7.5), ATP (20 mM), MgCl2 (13.0 mM) and K2SO4 (3 mM). 4. The specific activity of 3'-phosphoadenosine-5'-phosphosulphate synthesizing activity in gut cytosol increased during development of the sixth instar larva, reaching a peak at day 4. A sudden fall in specific activity was observed in the prepupal stage. 5. 3'-Phosphoadenosine-5'-phosphosulphate formation is the rate limiting process in the overall sulphation of p-nitrophenol in the gut cytosol preparations from S. littoralis. 6. It is concluded that the properties of the sulphate-activating system in this insect are similar to those reported for vertebrates.  相似文献   

2.
Structure-activity relationship (SAR) studies of novel 2-[3-trifluoromethyl-5-alkyl(thio)ether pyrazo-1-yl]-5-methanesulfonyl pyridine derivatives for canine COX enzymes are described. The 4-cyano-5-alkyl ethers were found to have excellent potency and selectivity, whereas the 5-thioethers were potent but less selective than the ether analogs in a canine whole blood (CWB) COX-2 assay.  相似文献   

3.
The 2-arylvinyl moiety in 1-(3-chlorophenyl)-3-(4-piperidyl)-5-[(E)-2-(5-chloro-1H-indol-3-yl)vinyl]pyrazole 2, which has previously shown improved DNA gyrase inhibition and target-related antibacterial activity, was transformed to other groups and the in vitro antibacterial activity of the synthesized compounds was evaluated. Many of the 5-[(E)-2-arylvinyl]pyrazoles synthesized in this study exhibited potent antibacterial activity against quinolone-resistant clinical isolates of gram-positive bacteria with minimal inhibitory concentration values equivalent to those against susceptible strains.  相似文献   

4.
The characteristics of the enzyme Delta(1)-pyrroline-5-carboxylic acid dehydrogenase from etiolated barley (Hordeum distichum) shoots have been examined. The bulk of the enzyme activity was found in the 10,000g pellet fraction, this activity being displayed only after detergent treatment of the suspended pellet. The enzyme was most active at pH 8, and activity was NAD-dependent. Enzyme activity was unaffected by either mannitol or sucrose in the reaction mixture up to a concentration of 0.45 m but was strongly inhibited by Cl(-) and, to a lesser extent, SO(4) (2-). The inhibition attributable to KCl was reversed by increasing the concentration of Delta(1)-pyrroline-5-carboxylic acid in the reaction mixture.  相似文献   

5.
Previous studies suggested that increased activity of phosphodiesterase (PDE)5 in the kidneys of cirrhotic rats contributes to sodium retention. This study examined the role of PDE5 in the changes in vascular reactivity, hemodynamics, and sodium excretion in rats with liver cirrhosis. Four weeks after bile duct ligation (BDL) or sham operation (SO), in vitro reactivity of aortic rings to various agents and in vivo effects of a PDE5-selective inhibitor [1,3-dimethyl-6-(2-propoxy-5-methanesulfonylamidophenyl)pyrazolo[3,4d]-pyrimidin-4-(5H)-one, DMPPO] were studied. The vasodilator responses to nitroglycerin and S-nitroso-N-acetyl-penicillamine (SNAP) in phenylephrine-precontracted rings without endothelium were attenuated in BDL compared with SO rats. Pretreatment with DMPPO (0.1 microM) enhanced these responses and eliminated the differences between the two groups. Vasodilation to DMPPO itself was also less in BDL rats. The responses to phenylephrine were attenuated in endothelium-rich aorta from BDL relative to SO rats, but they were similar in endothelium-denuded aorta and remained similar despite preincubation with SNAP (0.1 microM) alone or with SNAP and DMPPO. In vivo, BDL rats were vasodilated relative to SO rats; DMPPO (5 mg/kg i.v.) decreased arterial pressure and vascular resistance in both groups equally and caused significant increase in sodium excretion in BDL rats only. In conclusion, the results are in accordance with a possible increase in PDE5 activity in aorta and kidney of cirrhotic rats that results in reduced responses to NO donors and contributes to the increase in sodium retention. PDE5 inhibitors may ameliorate sodium retention in cirrhosis but may worsen vasodilation. Examining the effect of PDE5 inhibitors after chronic administration will be more revealing.  相似文献   

6.
Complexes of iron(II) and iron(III) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H), 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (4-Me-5-NH2-1-iqtsc-H) and 4-(m-aminophenyl)-2-formylpyridine thiosemicarbazone (4-m-NH2ph-2-pytsc-H) were synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibilities (from room temperature down to liquid N2 temperature), and M?ssbauer, electronic, and infrared spectral studies. On the basis of these studies, a highly distorted, high-spin, five-coordinate structure for Fe(HL)SO4 (HL = 1-iqtsc-H, 4-Me-5-NH2-1-iqtsc-H or 4-m-NH2ph-2-pytsc-H) and a distorted, low-spin, octahedral structure for Fe(HL)Cl2 are suggested. The EPR spectra of iron(III) complexes show that all have dxy low-spin ground state. All these complexes have been screened for their antitumor activity against the P 388 lymphocytic leukemia test system in mice and have been found to possess significant activity at the dosages employed.  相似文献   

7.
The X-ray structures of two complexes of bovine ribonuclease-A produced by soaking pre-grown crystals in solutions of the inhibitors cytidylyl-2',5'-guanosine (2',5' CpG) and deoxycytidylyl-3',5'-guanosine (3',5'dCpdG) have been determined at 1.5 A resolution and refined by restrained least squares to R = 21.0% for 17,855 reflections, and R = 19.1% for 16,347 reflections, respectively. Binding of the substrate analogs to the protein has taken place in a completely unexpected and previously unreported manner. In each case the guanine base occupies the well characterized B1 pyrimidine binding site adjacent to Thr-45 (described by Richards, F.M., Wyckoff, H.W., Carlson, W.D., Allewell, N.M., Lee, B. and Mitsui, Y. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 35-54, and others including Palmer, R.A., Moss, D.S., Haneef, I. and Borkakoti, N. (1984) Biochim. Biophys. Acta 785, 81-88) having entered through a secondary channel external to the active site itself. We designate this reversed non-productive mode as retro-binding. In this mode of binding the SO4(2-) anion bound in the active site of the native protein crystals (Borkakoti, N., Moss, D.S. and Palmer, R.A. (1982) Acta Crystallogr. B38 2210-2217) has not been displaced by the phosphate of the inhibitor molecule as originally anticipated and observed in other studies. Instead the CMP or dCMP moiety of the inhibitor molecule is held loosely in a channel running towards the surface of the protein molecule and is thus completely external to the active site. Consequently, although it has been possible to model them, no attempt has been made to refine either the disordered cytosine in the CpG complex or the deoxycytosine in the dCpdG complex. The traditional B2 purine binding site of RNase (Richards et al., 1971) is unoccupied by the soaked inhibitors. Important changes that have taken place in the protein structure include: stabilization of both Lys-41 and Gln-11 via H-bonding to SO4(2-); stabilization of His-119 in the A conformation (Borkakoti, N., Moss, D.S. and Palmer, R.A. (1982) Acta Crystallogr. B38 2210-2217); and stabilization of SO4(2-) by H-bonds formed with the retro-bound guanine base. Binding of the inhibitors and stabilization of the active site is accompanied by displacement and redistribution of solvent molecules.  相似文献   

8.
A series of racemic 3-phenyl-5-methyl-2H,5H-furan-2-ones related to a natural product, (-)incrustoporine, was synthesized, and their antifungal activity evaluated. The key structural feature, furanone ring, was closed via H2SO4-mediated cyclization of 2-phenylpent-4-enoic acids. The compounds displayed antifungal activity, especially against filamentous fungi. Expressed as the minimum inhibition concentration (MIC) in micromol/L, the activity of the most promising derivative against Absidia corymbifera matched that of ketoconazole (31.25 micromol/L). In terms of microg/mL, the substance was more active (7.6 microg/mL) than this standard antifungal drug (16.6 microg/mL).  相似文献   

9.
ATP-sulfurylase (ATP:sulfate adenylyltransferase; EC 2.7.7.4), the first enzyme of the two-step sulfate activation sequence, was purified extensively from rat liver cytosol. The enzyme has a native molecular mass of 122 +/- 12 kDa and appears to be composed of identical 62 +/- 6-kDa subunits. At 30 degrees C and pH 8.0 (50 mM Tris-Cl buffer containing 5 mM excess Mg2+), the best preparations have "forward reaction" specific activities of about 20 and 2 units X mg protein-1 with MoO4(2-) and SO4(2-), respectively. The reverse (ATP synthesis) specific activity is about the same as the forward molybdolysis activity. The kinetic constants under the above conditions are as follows: KmA = 0.21 mM, Kia = 0.87 mM, KmB = 0.18 mM, KmQ = 0.65 microM, Kiq = 0.11 microM, and KmP = 5.0 microM where A = MgATP, B = SO4(2-), Q = APS, and P = total PPi at 5 mM Mg2+. PPi is a mixed-type inhibitor with respect to MgATP and SO4(2-). SeO4(2-) is an alternative inorganic substrate with a Vmax about 20% that of SO4(2-). The product, APSe, is unstable. But in the presence of a sufficient excess of APS kinase, APSe is completely converted to PAPSe. The rate constant for nonenzymatic PAPSe hydrolysis was determined from measurements of the final steady-state reaction rate in the presence of limiting initial SeO4(2-) and a large excess of MgATP, ATP sulfurylase, APS kinase, and the other coupling enzymes and their cosubstrates. The results yielded a k of 2.4 +/- 0.5 X 10(-3) sec-1 (t1/2 ca. 5 min). Phosphate is an effective buffer for enzyme purification and storage but inhibits catalytic activity, particularly at low substrate concentrations. In the presence of buffer levels of Pi, the MgATP reciprocal plot of the SO4(2-)-dependent reaction is concave-up. Inorganic monovalent oxyanions are dead end inhibitors competitive with SO4(2-) and apparently uncompetitive with respect to MgATP. The relative potencies are in the order ClO3- greater than ClO4- greater than FSO3- greater than NO3-. Thiosulfate is also competitive with SO4(2-) but noncompetitive with respect to MgATP. Several divalent oxyanions (MoO4(2-), WO4(2-), CrO4(2-), and HAsO4(2-] promote the enzyme-catalyzed cleavage of MgATP to AMP and MgPPi. The ratio Vmaxf/KmA ranged from 0.7 to 200 for various reactive inorganic substrates. The cumulative results suggest the random binding of MgATP and the inorganic substrate but the ordered release of MgPPi before APS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
In an effort to find a potent xanthine oxidoreductase (XO) inhibitor, we discovered the best compound 2-[2-(2-methoxy-ethoxy)-ethoxy]-5-[5-(2-methyl-pyridin-4-yl)-1H-[1,2,4]triazol-3-yl]-benzonitrile 28. Here, we describe the following: (1) the design, synthesis, and structure–activity relationship of a series of 3-phenyl-5-pyridyl-1,2,4-triazole derivatives by in vitro studies of XO inhibitory activity in bovine milk and in vivo studies of serum uric acid (UA) reductive activity in rats, (2) a drug interaction study by a cytochrome P450 3A4 (CYP3A4) assay, and (3) a pharmacokinetic (PK) study. Compound 28 exhibits potent XO inhibitory activity, serum UA-lowering activity in rats, weak CYP3A4 inhibitory activity, and moderate PK profile.  相似文献   

11.
Bioisosteric replacement studies led to the identification of N-(1-benzo[1,3]dioxol-5-yl-ethyl)-3-(2-chloro-phenyl)-acrylamide ((S)-3) as a highly potent KCNQ2 opener, and 3-(2,6-difluoro-phenyl)-N-[1-(2,3-dihydro-benzofuran-5-yl)-ethyl]-acrylamide ((S)-4), and N-[1-(2,3-dihydro-1H-indol-5-yl)-ethyl]-3-(2-fluoro-phenyl)-acrylamide ((S)-5) as highly efficacious KCNQ2 openers. In contrast, their respective R enantiomers showed significantly less or no appreciable KCNQ2 opener activity even at the highest concentration tested (10 microM). Because of its high potency and moderate efficacy as well as its convenient synthesis, (+/-)-3 was selected as a reference compound for analyzing efficacies of KCNQ openers in electrophysiology studies. Compounds (S)-4 and (S)-5 demonstrated significant activity in reducing neuronal hyperexcitability in rat hippocampal slices. The synthesis and the KCNQ2 opener activity of these acrylamides are described.  相似文献   

12.
The current studies were undertaken to establish an in vitro cellular model to study the transport of SO and Cl(-) and hormonal regulation and to define the possible function of the downregulated in adenoma (DRA) gene. Utilizing a postconfluent Caco-2 cell line, we studied the OH(-) gradient-driven (35)SO and (36)Cl(-) uptake. Our findings consistent with the presence of an apical carrier-mediated (35)SO/OH(-) exchange process in Caco-2 cells include: 1) demonstration of saturation kinetics [Michaelis-Menten constant (K(m)) of 0.2 +/- 0.08 mM for SO and maximum velocity of 1.1 +/- 0.2 pmol x mg protein(-1) x 2 min(-1)]; 2) sensitivity to inhibition by DIDS (K(i) = 0.9 +/- 0.3 microM); and 3) competitive inhibition by oxalate and Cl(-) but not by nitrate and short chain fatty acids, with a higher K(i) (5.95 +/- 1 mM) for Cl(-) compared with oxalate (K(i) = 0.2 +/- 0.03 mM). Our results also suggested that the SO/OH(-) and Cl(-)/OH(-) exchange processes in Caco-2 cells are distinct based on the following: 1) the SO/OH(-) exchange was highly sensitive to inhibition by DIDS compared with Cl(-)/OH(-) exchange activity (K(i) for DIDS of 0.3 +/- 0.1 mM); 2) Cl(-) competitively inhibited the SO/OH(-) exchange activity with a high K(i) compared with the K(m) for SO, indicating a lower affinity for Cl(-); 3) DIDS competitively inhibited the Cl(-)/OH(-) exchange process, whereas it inhibited the SO/OH(-) exchange activity in a mixed-type manner; and 4) utilizing the RNase protection assay, our results showed that 24-h incubation with 100 nM of thyroxine significantly decreased the relative abundance of DRA mRNA along with the SO/OH(-) exchange activity but without any change in Cl(-)/OH(-) exchange process. In summary, these studies demonstrated the feasibility of utilizing Caco-2 cell line as a model to study the apical SO/OH(-) and Cl(-)/OH(-) exchange processes in the human intestine and indicated that the two transporters are distinct and that DRA may be predominantly a SO transporter with a capacity to transport Cl(-) as well.  相似文献   

13.
Efficient catalytic conversion of microcrystalline cellulose (MCC) to 5-hydroxymethyl furfural (HMF), is achieved using acidic ionic liquids (ILs) as the catalysts and metal salts as co-catalysts in the solvent of 1-ethyl-3-methylimidazo-lium acetate ([emim][Ac]). A series of acidic ILs has been synthesized and tested in conversion of MCC to HMF. The effect of reaction conditions, such as reaction time, temperature, catalyst dosage, metal salts, water dosage, Cu(2+) concentration and various acidic ILs are investigated in detail. The results show that CuCl(2) in 1-(4-sulfonic acid) butyl-3-methylimidazolium methyl sulfate ([C(4)SO(3)Hmim][CH(3)SO(3)]), is found to be an efficient catalyst for catalytic conversion of MCC to HMF, and 69.7% yield of HMF is obtained. A mechanism to explain the high activity of CuCl(2) in [C(4)SO(3)Hmim][CH(3)SO(3)] is proposed. To the best of our knowledge, this report first proposes that the Cu(2+) and [C(4)SO(3)Hmim][CH(3)SO(3)] show better catalytic performance in catalytic conversion of MCC to HMF.  相似文献   

14.
A S Sun  M Renaud 《Mutation research》1989,219(5-6):295-302
Previous studies reported that 5'-nucleotidase activity was undetectable or at much lower levels in the homogenate of human chronic lymphocytic leukemic (CCL) cells than in normal lymphocytes. In the present study, 5'-nucleotidase specific activity in acute myelocytic leukemia (AML), which varied in a range from undetectable to 1.4 (nmoles/min.mg protein), was enhanced by cell fractionation, from undetectable in the homogenate, up to 18.8 +/- 1.2, 6.4 +/- 0.7 and 0.68 +/- 0.12 in plasma membranes, microsomes, and cytosol fraction, respectively. In a further fractionation of the cytosol of various leukemic cells with ammonium sulfate, 5'-nucleotidase specific activity increased up to 14-fold in the 60% (NH4)2SO4 fraction, with a recovery of 1266 +/- 115%. These data suggest that 5'-nucleotidase activity in fractionated leukemic cells is higher than reported previously and that the sum of 5'-nucleotidase activity in subcellular compartments is higher than that detected in the homogenate. Furthermore, even when 5'-nucleotidase was undetectable in a homogenate, it became detectable in the plasma membranes, suggesting that its ecto-enzyme function is still active in leukemic cells. The undetectable or low 5'-nucleotidase in the homogenate is indicative of (1) the enzyme itself being in an inactive form but becoming active after the fractionations, or (2) the presence of a factor(s) that prevents the enzyme from being detected but that is separated from the enzyme by the fractionations. In both cases, the rate of nucleotide catabolism by inactive 5'-nucleotidase in rapidly proliferating leukemic cells should be slower than when the enzyme is active. The present finding is consistent with our previous findings that during normal cell aging the high 5'-nucleotidase activity is associated with senescent non-proliferating cells but low or undetectable activity with rapidly proliferating immortal cells. The implications of 5'-nucleotidase for DNA synthesis in aging and cancer are discussed.  相似文献   

15.
Structure-activity relationship (SAR) studies of novel 5-alkyl and 5-aryl/heteroaryl substituted 1,2,4-triazoles are described. The in vitro activity is compared to the pyrazole class of compounds with analogous side chains to delineate the contribution of the triazole ring nitrogen in binding to the active site. Both series are quite potent and selective in the canine whole blood (CWB) COX-2 assay, suggesting the increased binding contribution of the hydrophobic side chains.  相似文献   

16.
Vibrio parahaemolyticus utilized ATP, ADP or AMP as the sole source of carbon. About three times higher activity of membrane-bound 5'-nucleotidase was observed in cells grown in the presence of these nucleotides than in their absence: and therefore the enzyme seems to be inducible. Since the 5'-nucleotidase activity could be measured with whole cells, the active site of this enzyme appears to be outwardly oriented. Both Mg2+ and Cl- were required for activity. Among the divalent cations tested, Mn2+ and Co2+ could replace Mg2+ to some extent, whereas Zn2+ strongly inhibited activity. Among the anions tested, Br-, I- and NO3- could replace Cl-, but SO4(2-) and CH3COO- could not. When cells were grown with ATP, Cl- was indispensable and Zn2+ strongly inhibited growth. Therefore, it is concluded that extracellular ATP and other 5'-nucleotides are cleaved by the membrane-bound 5'-nucleotidase outside the cells and that the adenosine produced is then utilized.  相似文献   

17.
The dual role of glutathione as a transducer of S status (A.G. Lappartient and B. Touraine [1996] Plant Physiol 111: 147-157) and as an antioxidant was examined by comparing the effects of S deprivation, glutathione feeding, and H2O2 (oxidative stress) on SO42- uptake and ATP sulfurylase activity in roots of intact canola (Brassica napus L.). ATP sulfurylase activity increased and SO42- uptake rate severely decreased in roots exposed to 10 mM H2O2, whereas both increased in S-starved plants. In split-root experiments, an oxidative stress response was induced in roots remote from H2O2 exposure, as revealed by changes in the reduced glutathione (GSH) level and the GSH/oxidized glutathione (GSSG) ratio, but there was only a small decrease in SO42- uptake rate and no effect on ATP sulfurylase activity. Feeding plants with GSH increased GSH, but did not affect the GSH/GSSG ratio, and both ATP sulfurylase activity and SO42- uptake were inhibited. The responses of the H2O2-scavenging enzymes ascorbate peroxidase and glutathione reductase to S starvation, GSH treatment, and H2O2 treatment were not to glutathione-mediated S demand regulatory process. We conclude that the regulation of ATP sulfurylase activity and SO42- uptake by S demand is related to GSH rather than to the GSH/GSSG ratio, and is distinct from the oxidative stress response.  相似文献   

18.
3'-Phosphoadenosine-5'-phospho[35S]sulfate (PAP35S) was prepared by incubating ATP and carrier-free H2(35)SO4 with a 100,000g supernatant fraction prepared from chick embryo chondrocytes. The product was partially purified by paper electrophoresis and mixed with unlabeled PAPS to give a solution of PAP35S with a specific activity and a concentration approximating those required for the desired metabolic studies. The product was analyzed by high-performance liquid chromatography on an anion-exchange column to determine the proportion of the 35SO4 cpm and A260 material found in the PAPS and other contaminating nucleotides. The PAP35S was purified further by preparative high-performance liquid chromatography. The exact specific activity of the PAP35S was then determined by using this PAP35S preparation as the SO4 donor in a sulfotransferase reaction using a microsomal preparation from the chick embryo chondrocytes as the enzyme and an 3H-labeled oligosaccharide as the SO4 acceptor. The sulfated oligosaccharide was then isolated and the number of 3H and 35SO4 counts per minute in this product were used to calculate the specific activity of the donor. The features of this generally useful approach for preparing PAP35S of any desired specific activity and concentration are discussed.  相似文献   

19.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

20.
The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号