首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periocular vaccination of rabbits with preexisting herpes simplex virus type 1 (HSV-1) latent infection with recombinant HSV-2 glycoproteins B and D (gB2 and gD2) plus adjuvant significantly reduced ocular viral shedding. Rabbits were infected in both eyes with HSV-1 strain McKrae. Following HSV-1 infection and the establishment of latency (28 days postinfection), rabbits were given a periocular subconjunctival vaccination three times at 3-week intervals. Beginning 3 weeks after the final vaccination, tear films were collected daily and cultured to detect the presence of HSV-1 and determine the spontaneous HSV-1 ocular shedding rates. Periocular vaccination increased the mean HSV-1 serum neutralizing antibody titer to fivefold above that seen in mock-vaccinated latently infected rabbits. gB enzyme-linked immunosorbent assay (ELISA) antibody titers were increased approximately 8-fold, and gD ELISA antibody titers were increased 60-fold. These increases were all statistically significant (P < 0.0001). In two independent experiments, vaccination reduced the spontaneous shedding rate by approximately 2.5-fold (P < 0.0004). In addition, the percentage of eyes that never shed virus during the 6 week postvaccination test period increased threefold (20% in controls versus 60% in vaccinated animals; P < 0.007). These results show that spontaneous ocular shedding of HSV-1 in latently infected rabbits can be significantly reduced by local periocular vaccination. This is the first report in any animal model of a successful therapeutic vaccine against recurrent HSV-1 ocular shedding. These results support the concept that development of a therapeutic vaccine for ocular HSV-1 recurrence in humans is possible.  相似文献   

2.
Immunization of mice with herpes simplex virus type 1 (HSV-1) mutant viruses containing deletions in the gene for virion host shutoff (vhs) protein diminishes primary and recurrent corneal infection with wild-type HSV-1. vhs mutant viruses are severely attenuated in vivo but establish latent infections in sensory neurons. A safer HSV-1 mutant vaccine strain, Delta41Delta29, has combined vhs and replication (ICP8-) deficits and protects BALB/c mice against primary corneal infection equivalent to a vhs- strain (BGS41). Here, we tested the hypothesis that Delta41Delta29 can protect as well as BGS41 in a therapeutic setting. Because immune response induction varies with the mouse and virus strains studied, we first determined the effect of prophylactic Delta41Delta29 vaccination on primary ocular infection of NIH inbred mice with HSV-1 McKrae, a model system used to evaluate therapeutic vaccines. In a dose-dependent fashion, prophylactic Delta41Delta29 vaccination decreased postchallenge tear film virus titers and ocular disease incidence and severity while eliciting high levels of HSV-specific antibodies. Adoptive transfer studies demonstrated a dominant role for immune serum and a lesser role for immune cells in mediating prophylactic protection. Therapeutically, vaccination with Delta41Delta29 effectively reduced the incidence of UV-B-induced recurrent virus shedding in latently infected mice. Therapeutic Delta41Delta29 and BGS41 vaccination decreased corneal opacity and delayed-type hypersensitivity responses while elevating antibody titers, compared to controls. These data indicate that replication is not a prerequisite for generation of therapeutic immunity by live HSV mutant virus vaccines and raise the possibility that genetically tailored replication-defective viruses may make effective and safe therapeutic vaccines.  相似文献   

3.
Vaccination of experimental animals can provide efficient protection against ocular herpes simplex virus type 1 (HSV-1) challenge. Although it is suspected that local immune responses are important in protection against ocular HSV-1 infection, no definitive studies have been done to determine if local ocular vaccination would produce more efficacious protection against HSV-1 ocular challenge than systemic vaccination. To address this question, we vaccinated groups of rabbits either systemically or periocularly with recombinant HSV-2 glycoproteins B (gB2) and D (gD2) in MF59 emulsion or with live KOS (a nonneurovirulent strain of HSV-1). Three weeks after the final vaccination, all eyes were challenged with McKrae (a virulent, eye disease-producing strain of HSV-1). Systemic vaccination with either HSV-1 KOS or gB2/gD2 in MF59 did not provide significant protection against any of the four eye disease parameters measured (conjunctivitis, iritis, epithelial keratitis, and corneal clouding). In contrast, periocular vaccination with gB2/gD2 in MF59 provided significant protection against conjunctivitis and iritis, while ocular vaccination with live HSV-1 KOS provided significant protection against all four parameters. Thus, local ocular vaccination provided better protection than systemic vaccination against eye disease following ocular HSV-1 infection. Since local vaccination should produce a stronger local immune response than systemic vaccination, these results suggest that the local ocular immune response is very important in protecting against eye disease due to primary HSV-1 infection. Thus, for clinical protection against primary HSV-1-induced corneal disease, a local ocular vaccine may prove more effective than systemic vaccination.  相似文献   

4.
The DNA region encoding the complete herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) was inserted into a baculovirus transfer vector, and recombinant viruses expressing gK were isolated. Four gK-related recombinant baculovirus-expressed peptides of 29, 35, 38, and 40 kDa were detected with polyclonal antibody to gK. The 35-, 38-, and 40-kDa species were susceptible to tunicamycin treatment, suggesting that they were glycosylated. The 38- and 40-kDa species corresponded to partially glycosylated precursor gK (pgK) and mature gK, respectively. The 29-kDa peptide probably represented a cleaved, unglycosylated peptide. The 35-kDa peptide probably represented a cleaved, glycosylated peptide that may be a precursor to pgK. Indirect immunofluorescence with polyclonal antibody to gK peptides indicated that the recombinant baculovirus-expressed gK was abundant on the surface of the insect cells in which it was expressed. Mice vaccinated with the baculovirus-expressed gK produced very low levels (< 1:10) of HSV-1 neutralizing antibody. Nonetheless, these mice were partially protected from lethal challenge with HSV-1 (75% survival). This protection was significant (P = 0.02). Despite some protection against death, gK-vaccinated mice showed no protection against the establishment of latency. Surprisingly, gK-vaccinated mice that were challenged ocularly with a stromal disease-producing strain of HSV-1 had significantly higher levels of ocular disease (herpes stromal keratitis) than did mock-vaccinated mice. In summary, this is the first report to show that vaccination with HSV-1 gK can provide protection against lethal HSV-1 challenge and that vaccination with an HSV-1 glycoprotein can significantly increase the severity of HSV-1-induced ocular disease.  相似文献   

5.
Previously we showed that mice immunized with a vaccinia virus vector expressing the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) gene (vaccinia/gD) were protected against both lethal and latent infections with HSV-1 for at least 6 weeks after immunization (K. J. Cremer, M. Mackett, C. Wohlenberg, A. L. Notkins, and B. Moss, Science 228:737-740, 1985). In the experiments described here, we examined long-term immunity to HSV following vaccinia/gD vaccination, the effect of revaccination with vaccinia/gD, and the impact of previous immunity to vaccinia virus on immunization with the gD recombinant. Mice immunized with vaccinia/gD showed 100, 100, and 80% protection against lethal infection with HSV-1 at 18, 44, and 60 weeks postimmunization, respectively. Protection against latent trigeminal ganglionic infection was 70, 50, and 31% at 6, 41, and 60 weeks postvaccination, respectively. To study the effect of reimmunization on antibody levels, mice vaccinated with vaccinia/gD were given a second immunization (booster dose) 3 months after the first. These mice developed a 10-fold increase in neutralizing-antibody titer (221 to 2,934) and demonstrated a significant increase in protection against lethal HSV-1 challenge compared with animals that received only one dose of vaccinia/gD. To determine whether preexisting immunity to vaccinia virus inhibited the response to vaccination with vaccinia/gD virus, mice were immunized with a recombinant vaccinia virus vector expressing antigens from either influenza A or hepatitis B virus and were then immunized (2 to 3 months later) with vaccinia/gD. These mice showed reduced titers of neutralizing antibody to HSV-1 and decreased protection against both lethal and latent infections with HSV-1 compared with animals vaccinated only with vaccinia/gD. We conclude that vaccination with vaccinia/gD produces immunity against HSV-1 that lasts over 1 year and that this immunity can be increased by a booster but that prior immunization with a vaccinia recombinant virus expressing a non-HSV gene reduces the levels of neutralizing antibody and protective immunity against HSV-1 challenge.  相似文献   

6.
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation.  相似文献   

7.
Peptide-containing nerve fibers (peptidergic fibers) abundantly innervate the mammalian cornea. We investigated their role in ocular herpes simplex infection in mice by using capsaicin, which causes degeneration and permanent loss of peptidergic neurons in neonates and temporary peptide depletion in adult animals. The corneas of neonatally denervated BALB/c mice were observed for capsaicin-induced keratitis at 11-14 wk of age and were then infected bilaterally with herpes simplex virus 1 (HSV-1); trigeminal (TG) ganglia were cocultivated 6 wk later to establish the rate of latent infection. We also applied capsaicin eye drops to adult BALB/c mice that had been infected with HSV-1 6 wk earlier, and measured viral shedding before, and 3 days and 2 months after, administration of capsaicin drops; TG ganglia of these animals were cocultivated at 3 days and 2 months after capsaicin application. Neurotrophic keratitis was found in 81% of neonatally denervated animals; mortality rate due to HSV-1 infection was reduced from 80% in the controls to 24% in the capsaicin-treated group, and recovery of latent virus by cocultivation was reduced by 50%. Viral shedding could not be produced by capsaicin eye drops in adult animals infected with HSV-1. However, recovery of latent virus was significantly reduced in TG ganglia sampled 3 days and 2 months after capsaicin drops were instilled. Our findings suggest 1) that peptidergic fibers play a crucial role in the establishment of trigeminal HSV-1 latency and 2) that reactivation of latently infected ganglia can be inhibited by topical capsaicin.  相似文献   

8.
Herpes simplex virus type 1 (HSV-1) produces oral lesions, encephalitis, keratitis, and severe infections in the immunocompromised host. HSV-1 is almost as common as HSV-2 in causing first episodes of genital herpes, a disease that is associated with an increased risk of human immunodeficiency virus acquisition and transmission. No approved vaccines are currently available to protect against HSV-1 or HSV-2 infection. We developed a novel HSV vaccine strategy that uses a replication-competent strain of HSV-1, NS-gEnull, which has a defect in anterograde and retrograde directional spread and cell-to-cell spread. Following scratch inoculation on the mouse flank, NS-gEnull replicated at the site of inoculation without causing disease. Importantly, the vaccine strain was not isolated from dorsal root ganglia (DRG). We used the flank model to challenge vaccinated mice and demonstrated that NS-gEnull was highly protective against wild-type HSV-1. The challenge virus replicated to low titers at the site of inoculation; therefore, the vaccine strain did not provide sterilizing immunity. Nevertheless, challenge by HSV-1 or HSV-2 resulted in less-severe disease at the inoculation site, and vaccinated mice were totally protected against zosteriform disease and death. After HSV-1 challenge, latent virus was recovered by DRG explant cocultures from <10% of vaccinated mice compared with 100% of mock-vaccinated mice. The vaccine provided protection against disease and death after intravaginal challenge and markedly lowered the titers of the challenge virus in the vagina. Therefore, the HSV-1 gEnull strain is an excellent candidate for further vaccine development.  相似文献   

9.
Ruan  Ping  Yang  Chun  Su  Jianjia  Cao  Ji  Ou  Chao  Luo  Chengpiao  Tang  Yanping  Wang  Qi  Yang  Fang  Shi  Junlin  Lu  Xiaoxu  Zhu  Linqun  Qin  Hong  Sun  Wen  Lao  Yuanzhi  Li  Yuan 《Virology journal》2013,10(1):1-11
Herpes simplex virus type-1(HSV-1) and HSV-2 are important human pathogens that cause significant ocular and urogenital complications, respectively. We have previously shown that HSV-1 virions lacking glycoprotein K (gK) are unable to enter into neurons via synaptic axonal membranes and be transported in either retrograde or anterograde manner. Here, we tested the ability of HSV-1 (F) gK-null to protect against lethal challenge with either highly virulent ocular HSV-1 (McKrae strain), or genital HSV-2 (G strain). The gK-null virus vaccine efficiently protected mice against lethal vaginal infection with either HSV-1(McKrae) or HSV-2 (G). Female mice were immunized via a single intramuscular injection with 106 PFU of the gK-null virus. Immunized mice were treated with Depo-Provera fourteen days after vaccination and were challenged via the vaginal route one week later. Ninety percent of mice vaccinated with the gK-null virus survived HSV-1 (McKrae) challenge, while 70% of these mice survived after HSV-2 (G) challenge. Moreover, all vaccinated mice exhibited substantially reduced disease symptoms irrespective of HSV-1 or HSV-2 challenge as compared to the mock vaccinated challenge group. T-cell memory immune responses to specific glycoprotein B (gB) and glycoprotein D (gD) peptide epitopes were detectable at 7 months post vaccination. These results suggest that the highly attenuated, non-neurotropic gK-null virus may be used as an effective vaccine to protect against both virulent HSV-1 and HSV-2 genital infections and induce lasting immune responses.  相似文献   

10.
The ability of the pleotropic, proinflammatory cytokine interleukin-6 (IL-6) to affect the replication, latency, and reactivation of herpes simplex virus type 1 (HSV-1) in cell culture and in IL-6 knockout (KO) mice was studied. In initial studies, we found no effect of exogenous IL-6, monoclonal antibodies to IL-6, or monoclonal antibody to the IL-6 coreceptor, gp130, on HSV-1 replication in vitro by plaque assay or reactivation ex vivo by explant cocultivation of latently infected murine trigeminal ganglia (TG). Compared with the wild-type (WT) mice, the IL-6 KO mice were less able to survive an ocular challenge with 10(5) PFU of HSV-1 (McKrae) (40% survival of WT and 7% survival KO mice; P = 0.01). There was a sixfold higher 50% lethal dose of HSV-1 in WT than IL-6 KO mice (1.7 x 10(4) and 2.7 x 10(3) PFU, respectively). No differences were observed in titers of virus recovered from the eyes, TG, or brains or in the rates of virus reactivation by explant cocultivation of TG from latently infected WT or KO mice. Exposure of latently infected mice to UV light resulted in comparable rates of reactivation and in the proportions of WT and KO animals experiencing reactivation. Moreover, quantitative PCR assays showed nearly identical numbers of HSV-1 genomes in latently infected WT and IL-6 KO mice. These studies indicate that while IL-6 plays a role in the protection of mice from lethal HSV infection, it does not substantively influence HSV replication, spread to the nervous system, establishment of latency, or reactivation.  相似文献   

11.
The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1) causes the immunoinflammatory lesion stromal keratitis (SK). Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4), which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT) controls. Moreover, providing additional soluble R4 (sR4) protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.  相似文献   

12.
13.
To correlate specific local immune responses with protection from corneal scarring, we examined immune cell infiltrates in the cornea after ocular challenge of vaccinated mice with herpes simplex virus type 1 (HSV-1). This is the first report to examine corneal infiltrates following ocular challenge of a vaccinated mouse rather than following infection of a naive mouse. Mice were vaccinated systemically with vaccines that following ocular challenge with HSV-1 resulted in (i) complete protection against corneal disease (KOS, an avirulent strain of HSV-1); (ii) partial protection, resulting in moderate corneal disease (baculovirus-expressed HSV-1 glycoprotein E [gE]); and (iii) no protection, resulting in severe corneal disease (mock vaccine). Infiltration into the cornea of CD4+ T cells, CD8+ T cells, macrophages, and cells containing various lymphokines was monitored on days 0, 1, 3, 7, and 10 postchallenge by immunocytochemistry of corneal sections. Prior to ocular challenge, no eye disease or corneal infiltrates were detected in any mice. KOS-vaccinated mice developed high HSV-1 neutralizing antibody titers (> 1:640) in serum. After ocular challenge, they were completely protected against death, developed no corneal disease, and had no detectable virus in their tear films at any time examined. In response to the ocular challenge, these mice developed high local levels of infiltrating CD4+ T cells and cells containing interleukin-2 (IL-2), IL-4, IL-6, or tumor necrosis factor alpha (TNF-alpha). In contrast, only low levels of infiltrating CD8+ T cells were found, and gamma interferon (IFN-gamma)-containing cells were not present until day 10. gE-vaccinated mice developed neutralizing antibody titers in serum almost as high as those of the KOS-vaccinated mice (> 1:320). After ocular challenge, they were also completely protected against death. However, the gE-vaccinated mice developed low levels of corneal disease and virus was detected in one-third of their eyes. Compared with KOS-vaccinated mice, the gE-vaccinated mice had a similar pattern of IFN-gamma, but a delay in the appearance of CD4+ T cells, CD8+ T cells, and IL-4-, IL-6-, and TNF-alpha-containing cells. In sharp contrast to those of the KOS-vaccinated mice, no cells containing IL-2 were detected in the eyes of gE-vaccinated mice at any time. Mock-vaccinated mice developed no detectable neutralizing antibody titer and were not protected from lethal HSV-1 challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
16.
By selectively regulating the expression of the trans-dominant-negative mutant polypeptide UL9-C535C, of herpes simplex virus type 1 (HSV-1) origin binding protein UL9 with the tetracycline repressor (tetR)-mediated gene switch, we recently generated a novel replication-defective and anti-HSV-specific HSV-1 recombinant, CJ83193. The UL9-C535C peptides expressed by CJ83193 can function as a potent intracellular therapy against its own replication, as well as the replication of wild-type HSV-1 and HSV-2 in coinfected cells. In this report, we demonstrate that CJ83193 cannot initiate acute productive infection in corneas of infected mice nor can it reactivate from trigeminal ganglia of mice latently infected by CJ83193 in a mouse ocular model. Given that CJ83193 is capable of expressing the viral alpha, beta, and gamma1 genes but little or no gamma2 genes, we tested the vaccine potential of CJ83193 against HSV-1 infection in a mouse ocular model. Our studies showed that immunization with CJ83193 significantly reduced the yields of challenge HSV in the eyes and trigeminal ganglia on days 3, 5, and 7 postchallenge. Like in mice immunized with the wild-type HSV-1 strain KOS, immunization of mice with CJ83193 prevents the development of keratitis and encephalitis induced by corneal challenge with wild-type HSV-1 strain mP. Delayed-type hypersensitivity (DTH) assays demonstrate that CJ83193 can elicit durable cell-mediated immunity at the same level as that of wild-type HSV-1 and is more effective than that induced by d27, an HSV-1 ICP27 deletion mutant. Moreover, mice immunized with CJ83193 developed strong, durable HSV-1-neutralizing antibodies at levels at least twofold higher than those induced by d27. The results presented in this report have shed new light on the development of effective HSV viral vaccines that encode a unique safety mechanism capable of inhibiting the mutant's own replication and that of wild-type virus.  相似文献   

17.
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.  相似文献   

18.
19.
Herpes simplex virus 1 (HSV-1) glycoprotein E (gE) mediates cell-to-cell spread and functions as an IgG Fc receptor (FcγR) that blocks the Fc domain of antibody targeting the virus or infected cell. Efforts to assess the functions of the HSV-1 FcγR in vivo have been hampered by difficulties in preparing an FcγR-negative strain that is relatively intact for spread. Here we report the FcγR and spread phenotypes of NS-gE264, which is a mutant strain that has four amino acids inserted after gE residue 264. The virus is defective in IgG Fc binding yet causes zosteriform disease in the mouse flank model that is only minimally reduced compared with wild-type and the rescue strains. The presence of zosteriform disease suggests that NS-gE264 spread functions are well maintained. The HSV-1 FcγR binds the Fc domain of human, but not murine IgG; therefore, to assess FcγR functions in vivo, mice were passively immunized with human IgG antibody to HSV. When antibody was inoculated intraperitoneally 20 h prior to infection or shortly after virus reached the dorsal root ganglia, disease severity was significantly reduced in mice infected with NS-gE264, but not in mice infected with wild-type or rescue virus. Studies of C3 knockout mice and natural killer cell-depleted mice demonstrated that the HSV-1 FcγR blocked both IgG Fc-mediated complement activation and antibody-dependent cellular cytotoxicity. Therefore, the HSV-1 FcγR promotes immune evasion from IgG Fc-mediated activities and likely contributes to virulence at times when antibody is present, such as during recurrent infections.  相似文献   

20.
We show that genital infection with neurotropic HSV type 2 (HSV-2) induced a significant increase of the neuropeptide substance P (SP) within the genital tract of mice. SP was shown to weakly interfere with the HSV-2 replication. Furthermore, lack of SP signaling through the use of mice deficient in the SP receptor, neurokinin 1 receptor (NK1R), revealed an important role for SP in the innate defense against HSV-2. NK1R-deficient mice had significantly enhanced levels of HSV-2 in the genital tract and in the CNS following infection and a significantly accelerated disease progression, which was associated with an impaired NK cell activity locally in the vagina. Lack of NK1R signaling did, however, not impair the animals' ability to mount a protective immune response to HSV-2 following vaccination with an attenuated virus. Both NK1R+/+ and NK1R-/- mice developed strong HSV-2-specific Th1 T cell responses following vaccination. No genital viral replication was observed in either vaccinated NK1R-deficient or NK1R+/+ control animals following a genital HSV-2 challenge, and all of these animals survived without any symptoms of disease. In conclusion, the present results indicate that SP and NK1R signaling contributes to the innate resistance against HSV-2 infection in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号