首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Genes SNO1 and SNZ1 are Saccharomyces cerevisiae homologues of PDX2 and PDX1 which participate in pyridoxine synthesis in the fungus Cercospora nicotianae. In order to clarify their function, the two genes SNO1 and SNZ1 were expressed in Escherichia coli either individually or simultaneously and with or without a His-tag. When expressed simultaneously, the two protein products formed a complex and showed glutaminase activity. When purified to homogeneity, the complex exhibited a specific activity of 480 nmol.mg(-1).min(-1) as glutaminase, with a Km of 3.4 mm for glutamine. These values are comparable to those for other glutamine amidotransferases. In addition, the glutaminase activity was impaired by 6-diazo-5-oxo-L-norleucine in a time- and dose-dependent manner and the enzyme was protected from deactivation by glutamine. These data suggest strongly that the complex of Sno1p and Snz1p is a glutamine amidotransferase with the former serving as the glutaminase, although the activity was barely detectable with Sno1p alone. The function of Snz1p and the amido acceptor for ammonia remain to be identified.  相似文献   

12.
13.
14.
15.
16.
Tran PT  Erdeniz N  Dudley S  Liskay RM 《DNA Repair》2002,1(11):895-912
Exo1p is a member of the Rad2p family of structure-specific nucleases that contain conserved N and I nuclease domains. Exo1p has been implicated in numerous DNA metabolic processes, such as recombination, double-strand break repair and DNA mismatch repair (MMR). In this report, we describe in vitro and in vivo characterization of full-length wild-type and mutant forms of Exo1p. Herein, we demonstrate that full-length yeast Exo1p possesses an intrinsic 5'-3' exonuclease activity as reported previously, but also possesses a flap-endonuclease activity. Our study indicates that Exo1p shares similar, but not identical structure-function relationships to other characterized members of the Rad2p family in the N and I nuclease domains. The two exo1p mutants we examined, showed deficiencies for both double-stranded DNA (dsDNA) 5'-3' exonuclease and flap-endonuclease activities. Examining the genetic interaction of these two exo1 mutations with rad27Delta suggest that the Exo1p flap-endonuclease activity and not the dsDNA 5'-3' exonuclease is redundant to Rad27p for viability. In addition, our in vivo results also indicate that many exo1Delta phenotypes are dependent on the complete catalytic activities of Exo1p. Finally, our findings plus those of other investigators suggest that Exo1p functions both in a catalytic and a structural capacity during DNA MMR.  相似文献   

17.
18.
Characterization of methylglyoxal synthase in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Methylglyoxal synthase in Saccharomyces cerevisiae was purified approximately 300 folds from cell extracts with 20% of activity yield. During purification procedures, polymorphic behaviours of the enzyme were observed. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis and consisted of a single polypeptide chain of Mr = 26,000. The enzyme was most active at pH 9.5-10.5 and strictly specific to dihydroxyacetone phosphate with Km = 3 mM. Phosphoenolpyruvate, glyceraldehyde-3-phosphate, orthophosphate and thiol compounds were potent inhibitors of the enzyme.  相似文献   

19.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号