首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural gene mutants were cloned and exploited to identify the major catalytic domains of Bacillus subtilis DNA polymerase III (BsPolIII), a 162.4-kDa [1437 amino acids (aa)] polymerase: 3'-5' exonuclease (Exo) required for replicative DNA synthesis. Analysis of the sequence, mutagenicity, and catalytic behavior of natural and site-directed point mutants of BsPolIII unequivocally located the domain involved in exonuclease catalysis within a 155-aa residue segment displaying homology with the Exo domain of Escherichia coli DNA polymerase I. Sequence analysis of four structural gene mutations which specifically alter then enzyme's reactivity to the inhibitory dGTP analog, 6-(p-hydroxyphenylhydrazino)uracil, and the inhibitory arabinonucleotide, araCTP, defined a domain (Pol) involved in dNTP binding. The Pol domain was in the C-terminal fourth of the enzyme within a 98-aa segment spanning aa 1175-1273. The primary structure of the domain was unique, displaying no obvious conservation in any other DNA polymerase, including the distantly related PolIIIs of the Gram- organisms, E. coli and Salmonella typhimurium.  相似文献   

2.
Summary We have determined the nucleotide sequence of the polC gene of Bacillus subtilis which codes for DNA polymerase III. Our recent analysis has revealed that the gene comprises 4311 nucleotides, from the start to the stop codon, 306 nucleotides more than we reported earlier. The plasmid reported by us and by N.C. Brown's laboratory contained a sequence at the end of the gene which is not related to the polC region of B. subtilis. We have isolated the rest of the gene, the sequence of which is presented in this paper. The new stop codon is followed by a hyphenated palindromic sequence of 13 nucleotides. The C-terminus' of the coding region contains the novel mutation, dnaF, which results in a defect in the initiation of replication due to a change in the codon TCC to TTC (serine to phenylalanine). The hypermutator mutation mut-1 is due to two point mutations in the 3 to 5 exonuclease domain, the proof reading function. The codon changes are GGA to GAA (glycine to glutamic acid) and AGC to AAC (serine to asparagine). The elongation defective mutation, polC26, affecting the catalytic site that adds nucleotides to the growing chain, is due to a change in the codon GTC to GAC (valine to aspartic acid). It is separated from the mutation reported earlier, azp-12, by 306 nucleotides. Knowing the locations of the mutational sites allowed us to deduce the domains of the gene and the enzyme it encodes, and permitted us to present a precise map of the gene at the molecular level.Abbreviations HPUra p-hydroxyphenyl azouracil - nt nucleotide - PCR polymerase chain reaction  相似文献   

3.
The objectives of this work were to engineer the cloned polC gene encoding Bacillus subtilis DNA polymerase III for controlled overexpression in Escherichia coli and to devise a facile purification scheme permitting the large-scale production of pure recombinant polymerase. The translational signals of polC were restructured by expression cassette PCR (MacFerrin et al., 1990, Proc. Natl. Acad. Sci. USA 87, 1937-1941), and the modified gene was inserted into the expression plasmid, pKC30 (Rosenberg et al., 1983, in "Methods in Enzymology," Vol. 101, pp. 123-138, Academic Press, San Diego), under the strict control of the coliphage lambda pL promoter and its repressor, cI. When the system was derepressed at 32 degrees C, soluble DNA polymerase III accumulated at levels approximating 2% of total cellular protein. The recombinant protein was purified to greater than 99% purity by utilizing a tandem combination of Cibacron blue agarose, phenyl-Sepharose, and MonoQ FPLC chromatography. The properties of the purified recombinant protein were indistinguishable from those of native B. subtilis DNA polymerase III.  相似文献   

4.
5.
6.
7.
In vivo studies of PBS2 phage replication in a temperature-sensitive Bacillus subtilis DNA polymerase III (Pol III) mutant and a temperature-resistant revertant of this mutant have suggested the possible involvement of Pol III in PBS2 DNA synthesis. Previous results with 6-(p-hydroxyphenylazo)-uracil (HPUra), a specific inhibitor of Pol III and DNA replication in uninfected cells, suggest that Pol III is not involved in phage DNA replication, due to its resistance to this drug. Experiments were designed to examine possible explanations for this apparent contradiction. First, assays of the host Pol III and the phage-induced DNA polymerase activities in extracts indicated that a labile Pol III did not result in a labile phage-induced enzyme, suggesting that this new polymerase is not a modified HPUra-resistant form of Pol III. Indeed the purified phage-induced enzyme was resistant to the active, reduced form of HPUra under all assay conditions tested. Since in vitro Pol III was capable of replicating the uracil-containing DNA found in this phage, the sensitivity of the purified enzyme to reduced HPUra was examined using phage DNA as template-primer and dUTP as substrate; these new substrates did not affect the sensitivity of the host enzyme to the drug.  相似文献   

8.
Deoxyribonucleic acid-dependent ribonucleic acid polymerase mutants of Bacillus subtilis strain Marburg were isolated after mutagenesis of spores with ethyl methane sulfonate. Genetic analysis by PBS1-mediated transduction and by transformation indicated that mutations responsible for all of the four phenotypic classes studied (rifampin resistance, streptovaricin resistance, streptolydigin resistance, and temperature sensitivity) were clustered close to the cysA14 locus. Three-factor transformation analysis has indicated the most probable marker order as follows: Rif(R)(Stv)(R)-Std(R)-Ts(418)-Ts(427). In addition, further characterization of the classical group I reference marker, cysA14, is reported.  相似文献   

9.
Genomic DNA encompassing polC, the structural gene specifying Bacillus subtilis DNA polymerase III (PolIII), was sequenced and found to contain a 4311-bp open reading frame (ORF) encoding a 162.4-kDa polypeptide of 1437 amino acids (aa). The ORF was engineered into an Escherichia coli expression plasmid under the control of the coliphage lambda repressor. Derepression of E. coli transformants carrying the recombinant vector resulted in the high-level synthesis of a recombinant DNA polymerase indistinguishable from native PolIII. N-terminal aa sequence analysis of the recombinant polymerase unequivocally identified the 4311-bp ORF as that of polC. Comparative aa sequence analysis indicated significant homology of the B. subtilis enzyme with the catalytic alpha subunit of the E. coli PolIII and, with the exception of an exonuclease domain, little homology with other DNA polymerases. The respective sequences of the mutant polC alleles, dnaF and ts-6, were identified, and the expression of specifically truncated forms of polC was exploited to assess the dependence of polymerase activity on the structure of the enzyme's C terminus.  相似文献   

10.
A simple and reproducible procedure is described which allows the fast and almost quantitative removal of DNA polymerases I and II from DNA polymerase III, in crude extracts of polA+ strains of Bacillus subtilis. The procedure entails streptomycin sulfate and ammonium sulfate fractionations; subsequent analysis of the partially purified preparation by G-200 chromatography, DEAE cellulose chromatography and density gradient sedimentation, shows that the ammonium sulfate fraction contains less than 5% of the total activity as DNA polymerase I and less than 2% as DNA polymerase II. The purification procedure, up to the ammonium sulfate step, was utilized for the analysis of the level of DNA polymerase III in several B. subtilis mutants, with results comparable to those obtained from the corresponding polA- strains following more cumbersome purification procedures. The M.W. of the purified form is of 227.000, somewhat greater than the published values. The early fractions of the purification have revealed the existence of a form with a M.W. of 426.000; the nature of this form, which has been observed in several instances and which is very unstable and short-lived, is under investigation.  相似文献   

11.
We have isolated a mutant of Bacillussubtilis deficient in DNA polymerase I, denominated polA42, which shows a reduced ability to repair the damage to DNA by UV radiation, MMS and mitomycin C;the ability to perform recombination is not appreciably impaired.DEAE cellulose chromatography allows the separation of polymerases I and II from the parental strain;a simple procedure is also described which allows to separate rapidly the polymerases II and III of the mutant strain. The three separated polymerases have similar catalytic properties but they can be distinguished for their sensitivity to inhibitors: PCMB inhibits polymerases II and III but not polymerase I; HPUra inhibits only polymerase III. All three enzymes are unaffected by nalidixate. The DNA synthesis occurring in cells of the polA42 strain permeabilized with toluene is inhibited by nalidixate, whereas the synthesis occurring in polA+ toluenized cells is unaffected by the drug. The polA gene has been mapped by transduction and localized between the phe12 and argA3 genes.  相似文献   

12.
The replication of the Bacillus subtilis bacteriophages SPP-1 and phi 105 is sensitive to 6-(p-hydroxyphenylazo)-uracil (HPUra), a selective inhibitor of replicative DNA synthesis of B. subtilis which acts specifically at the levels of a replication-specific polymerase, DNA polymerase III (pol III). The origin of the HPUra-sensitive polymerase required for phage replication was examined by comparison of the drug sensitivity of phage development in a normosensitive host with that in a host carrying azp-12, a polC mutation that specifies production of an HPUra-resistant pol III. azp-12 specified HPUra-resistant phage host pol III. The host polIII requirement for SPP-1 replication also was confirmed by the demonstration that phage development was temperature sensitive in a host mutant carrying the polC mutation mut-1 (ts). Examination of the pol III activity of crude and purified cell-free preparations derived from phage-infected cells did not indicate any detectable changes in the specific activity, purification behavior, or drug sensitivity of the enzyme.  相似文献   

13.
6-(p-Hydroxyphenylazo)-uracil, a purine analog that is known to specifically inhibit deoxyribonucleic acid polymerase III in gram-positive organisms, inhibited W-reactivation in Bacillus subtilis. On the other hand, W-reactivation proceeded normally in the presence of 6-(p-hydroxyphenylazo)-uracil when a strain possessing a resistant deoxyribonucleic acid polymerase III was used as the host.  相似文献   

14.
Genetic evidence suggests that the Bacillus subtilis dnaX gene only encodes for the τ subunit of both DNA polymerases III (Pol IIIs). The B.subtilis full-length protein and their mutant derivatives τ(373– 563) (lacking the N-terminal, domains I–III or amino acid residues 1–372) and τ(1–372) (lacking the C-terminal region or amino acids 373–563) have been purified. The τ protein forms tetramers, τ(373– 563) forms dimers, whereas τ(1–372), depending on the ionic strength, forms trimers or tetramers in solution. In the absence of single-stranded (ss) DNA and a nucleotide cofactor, τ interacts with the SPP1 hexameric replicative G40P DNA helicase in solution or with G40P-ATP bound to ssDNA, with a 1:1 stoichiometry. G40P(109–442), lacking the N-terminal amino acid residues 1–108, interacts with the C-terminal moiety of τ. The data indicate that the interaction of G40P with the τ subunit of Pol III, is relevant for the loading of the Pol IIIs into the SPP1 G38P-promoted open complex.  相似文献   

15.
Phleomycin stimulates ATP-independent DNA repair synthesis by polymerase II in toluenized B. subtilis cells. In the presence of ATP it also increases the synthesis, with BrdUTP, of DNA with a density between that of normal DNA and hybrid DNA, and it enhances replicative DNA synthesis by polymerase III.  相似文献   

16.
17.
J Errington 《FEBS letters》1987,224(2):257-260
The sigma-subunit of RNA polymerase is responsible for promoter recognition in prokaryotes [(1969) Nature 221, 43-46]. Alterations in the sigma-subunit are thought to be involved in controlling 'global' changes in gene expression, such as those involved in differentiation in the spore-forming bacterium Bacillus subtilis [(1981) Cell 25, 582-584]. Stragier et al. [(1985) FEBS Lett. 195, 3-11] have proposed that sigma-factors are composed of two domains: a C-terminal domain involved in promoter recognition and an N-terminal domain involved in interactions with RNA polymerase. We have sequenced another developmental gene from B. subtilis, spoIIIC, and the strong homology of its predicted product suggests that it too may be a sigma-factor. However, the spoIIIC product is small and lacks completely the conserved N-terminal domain of the sigma-subunits. I propose that the product of the spoIIIC gene may carry out the DNA-recognition functions of a sigma-factor but that it probably requires an auxiliary factor to interact with core RNA polymerase.  相似文献   

18.
19.
Perrino FW  Harvey S  McNeill SM 《Biochemistry》1999,38(48):16001-16009
The epsilon subunit is the 3'-->5' proofreading exonuclease that associates with the alpha and theta subunits in the E. coli DNA polymerase III. Two fragments of the epsilon protein were prepared, and binding of these epsilon fragments with alpha and theta was investigated using gel filtration chromatography and exonuclease stimulation assays. The N-terminal fragment of epsilon, containing amino acids 2-186 (epsilon186), is a relatively protease-resistant core domain of the exonuclease. The purified recombinant epsilon186 protein catalyzes the cleavage of 3' terminal nucleotides, demonstrating that the exonuclease domain of epsilon is present in the N-terminal region of the protein. The absence of the C-terminal 57 amino acids of epsilon in the epsilon186 protein reduces the binding affinity of epsilon186 for alpha by at least 400-fold relative to the binding affinity of epsilon for alpha. In addition, stimulation of the epsilon186 exonuclease by alpha using a partial duplex DNA is about 50-fold lower than stimulation of the epsilon exonuclease by alpha. These results indicate that the C-terminal region of epsilon is required in the epsilonalpha association. To directly demonstrate that the C-terminal region of epsilon contains the alpha-association domain fusion protein, constructs containing the maltose-binding protein (MBP) and fragments of the C-terminal region of epsilon were prepared. Gel filtration analysis demonstrates that the alpha-association domain of epsilon is contained within the C-terminal 40 amino acids of epsilon. Also, the epsilon186 protein forms a tight complex with theta, demonstrating that the association of theta with epsilon is localized to the N-terminal region of epsilon. Association of epsilon186 and theta is further supported by the stimulation of the epsilon186 exonuclease in the presence of theta. These data support the concept that epsilon contains a catalytic domain located within the N-terminal region and an alpha-association domain located within the C-terminal region of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号