首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


2.
In a study of the time of ovulation following synchronization of estrus in the ewe, the effect of time of treatment with GnRH (24 vs 36 h after pessary removal) and dosage (6.25 to 100 ug per ewe) were examined. All treatments synchronized the time of ovulation irrespective of when untreated ewes commenced to ovulate. As part of an evaluation of GnRH treatment in artificial insemination programs, an assessment was made of the quality of eggs obtained from control ewes and ewes treated with GnRH at either 24 or 36 h after pessary removal. Treatment at 24 h increased the number of retarded embryos (P < 0.01) and unfertilized ova (P < 0.01) collected per ewe, reduced the number of embryos collected per ewe (P < 0.01), and reduced (P < 0.05) the percentage of pregnant ewes compared with other groups. However, there were no differences between control ewes and ewes treated with GnRH at 36 h. GnRH treatment at 36 h was consequently examined as a means of improving conception rates following the intrauterine insemination of frozen-thawed semen. Insemination of GnRH-treated ewes 8 to 12 h before the median time of ovulation resulted in a nonsignificant increase (range 5.7 to 7.3%) in the percentage of ewes of mature age which became pregnant. Insemination 0 to 4 h before the median time of ovulation resulted in a nonsignificant decrease in the percentage of pregnant ewes. GnRH treatment did not influence the number of fetuses per ewe. Reasons for the failure of this treatment to significantly improve ewe fertility are discussed.  相似文献   

3.
The aim of this field study was to investigate the relationship of plasma urea nitrogen (PUN) with the pregnancy rate in lactating Awassi × Merino ewes. One hundred and eighty-five Awassi × Merino ewes were used in the present study. Ewes were fed a diet containing 17.4% crude protein and were milked twice a day by the milking machine. The ewes were synchronized for estrus by insertion of intravaginal sponges containing 30 mg flurogestone acetate for 14 days. At the time of sponge removal each ewe was administered eCG (600 IU). All ewes were inseminated twice with fresh semen into the external os of the cervix at 48 and 56 h after sponge removal. The day of insemination was considered as Day 0 for calculating the gestational period. Blood samples were collected from each ewe at Days 0, 18 for measurement of PUN concentrations and at Day 22 after AI for measurement of pregnancy-associated glycoprotein (PAG) by radioimmunoassay (RIA). Thirty-eight ewes (20.5%) were confirmed pregnant by PAG-RIA test at Day 22 and by ultrasonography at Day 80. The mean (±S.D.) concentration of PUN in all ewes at Day 0 was 12.7±4.6 mmol/L. There were non-significant differences in the level of PUN between pregnant and non-pregnant ewes at Days 0 (12.2±4.2 mmol/L vs. 12.8±4.7 mmol/L, respectively) and 18 (9.6±2.9 mmol/L vs. 10.4±4.0 mmol/L, respectively) after AI. Mean PUN concentrations decreased significantly from Day 0 to Day 18 after AI in both pregnant and non-pregnant ewes. By using logistic regression analysis, there was no effect of PUN concentrations on the probability of pregnancy occurrence in the studied ewes (odds ratio: 0.97; 95% confidence interval: 0.9-1.05; P=0.45). In conclusion, there was no evidence of a relationship between PUN concentration and pregnancy rate for lactating Awassi × Merino ewes in the present study because of low pregnancy rate observed.  相似文献   

4.
Two experiments in parous Welsh Mountain ewes determined the pattern of natural cervical relaxation over the peri-ovulatory period and investigated FSH and Misoprostol as cervical relaxants to facilitate transcervical passage of an insemination pipette into the uterine cavity. Following synchronisation of oestrus using progestagen sponges and PMSG (500 IU) the depth of cervical penetration was determined using a modified cattle insemination pipette as a measuring device. Penetration of the cervix was least at the time of sponge removal and increased to a maximum at 72 h after sponge removal and then declined. Intra-cervical administrations of either ovine FSH (Ovagen; 2mg) or Misoprostol (1mg; a Prostaglandin E(1) analogue) facilitated cervical penetration. Ovagen given 24h after sponge removal allowed transcervical intrauterine penetration in 100% of ewes at 54 and 60 h after sponge removal while Misoprostol given 48 h after sponge removal allowed trans-cervical penetration in 100% of ewes at 54 h. A combination of Ovagen and Misoprostol was as effective but not more so than Ovagen or Misoprostol alone. These results show that there is natural relaxation of the cervix at oestrus and that maximum relaxation occurs 72 h after sponge removal, which is too late for the correct timing of insemination. The intra-cervical administration of FSH or Misoprostol enhanced relaxation of the cervix and both were able to relax the cervix to allow intrauterine penetration 54 h after sponge removal, the optimum time for insemination. The results also show that FSH is biologically active after intracervical, topical application.  相似文献   

5.
The fertility enhancing effects of semen were examined following the intra-uterine insemination of killed spermatozoa plus seminal plasma 17 d prior to insemination with viable spermatozoa. Three experiments were conducted: two on 1.5-yr old and 2.5 to 5.5 yr-old Booroola Merino x South Australian Merino ewes in 1986 and one on 1.5 yr-old ewes in 1987. Differences between treatment and control groups for the percentage of ewes exhibiting estrus by Days 21 and 35 following fertile insemination, the percentage of ewes with viable embryos at Day 35, the number and weight of viable embryos per ewe, the nubmer of caruncular implantation sites and the progesterone level were not statistically significant (P>0.05). There were no statistically significant treatment by experiment interactions for any of the variables examined. Inflammation and edema of the endometrial tissue was not observed following the presensitization treatment.  相似文献   

6.
In Exp. 1, 40 ewes were used in a 2 x 2 factorial design to investigate the effects of intrauterine versus cervical insemination and superovulation using pig FSH or PMSG and GnRH on egg recovery and fertilization rate. Cervical inseminations were carried out at 48 and 60 h (N = 20 ewes) and intrauterine insemination at 52 h (N = 20 ewes) after progestagen pessary withdrawal. Eggs were recovered on Day 3 of the oestrous cycle. Ovulation, egg recovery and fertilization rates were independent of the type of superovulatory hormone used. Fertilization rate was high irrespective of insemination site but intrauterine insemination at 52 h was associated with a significant (P less than 0.01) decrease in egg recovery of over 40% compared with cervically inseminated ewes. In Exp. 2 ewes were inseminated at 36 (N = 5), 48 (N = 6) or 60 (N = 6) h after pessary withdrawal to determine the optimum intrauterine insemination time to maximize both fertilization rate and egg recovery. Egg recovery per ewe flushed was 23, 59 and 67% after intrauterine insemination at 36, 48 and 60 h respectively. Correspondingly, 0, 85 and 100% of the eggs recovered were fertilized. The results of Exps 1 and 2 suggest that when intrauterine insemination occurs before or during ovulation it interferes with oocyte collection by the fimbria. In Exp. 3 egg recovery and fertilization rates were determined after cervical insemination at 48 and 60 h (N = 8) or intrauterine insemination at 48 (N = 9) or 60 (N = 8) h after progestagen withdrawal. Ewes in the last two groups were subdivided and inseminated unilaterally or bilaterally. Egg recovery was high after cervical insemination (95%) but only 36% of these eggs were fertilized. Unilateral intrauterine insemination was as effective as bilateral in ensuring high fertilization rates (100 versus 97%). Intrauterine insemination at 48 h compared with 60 h resulted in a significantly lower (P less than 0.05) percentage of eggs recovered (42 versus 90% respectively). However, reducing the degree of interference by adopting unilateral rather than bilateral insemination did not alleviate the detrimental effects of the 48-h insemination time on egg recovery. From these results we advocate the adoption of intrauterine insemination at 60 h after progestagen withdrawal to maximize fertilization rate and egg recovery in superovulated ewes.  相似文献   

7.
In three groups of puberal sheep, one of young Merino ewes and one of Merino ewe lambs at Armidale, Australia, and one of Perendale ewe lambs at Hamilton, New Zealand, 20, 33 and 6.6% respectively of the animals failed to ovulate at their first estrus. Duration of estrus and intensity of overt estrous symptoms in these animals were the same as in their ovulating contemporaries. While the anovulatory estrus was followed by estrus with ovulation in most animals, many of the Merino lambs had a second anovulatory estrus and then went into anestrum. In some animals, failure of ovulation was followed by luteinization of a large follicle. In the Perendale lambs, the inter-estrous period following an anovulatory estrus was 15.9 days compared to 16.7 days in their ovulating contemporaries. The occurrence of anovulatory estrus in these three different groups of animals suggests that it is common in the first breeding season of young ewes. Lambing percentage probably is reduced below the expected level by the presence in the flock of ewe lambs that have had an estrus but not yet reached puberty.  相似文献   

8.
This experiment was conducted to define the temporal relationships among estrus, the LH surge and ovulation after estrus synchronization in dwarf goats and to assess the effect of season on these parameters. In November (breeding season), March (transition period) and July (non-breeding season), estrus was synchronized in 12 dwarf goats by means of intravaginal sponges containing 60 mg medroxyprogesterone acetate (MAP) for 10 d, coupled with 125 microg cloprostenol i.m. 48 h before sponge removal and 300 IU eCG i.m. at sponge removal. A different group of animals was used during each time period. Onset of estrus was monitored using two males, and blood samples for the measurement of plasma LH were collected at 2-h intervals from 24 to 60 h after sponge removal. Ovulation was confirmed by laparoscopy at 54 and 72 h after sponge removal. A seasonal shift was detected in the intervals to onset of estrus, LH surge, and ovulation after sponge removal (P<0.05), with sponge removal to onset of estrus being shorter (P<0.05) in November (25.0 +/- 1.56 h) and July (28.9 +/- 2.43 h) than in March (40.9 +/- 3.27 h). The intervals between onset of estrus and the LH surge and between the LH surge and ovulation were found to be constant throughout the different seasons. An optimal time for breeding, artificial insemination, oocyte and embryo recovery, and embryo transfer may be predicted using information gained from these studies.  相似文献   

9.
Artificial insemination protocols depend on efficient behavioral estrus detection and insemination time in Angora goat. Therefore, we aim to determine the accuracy of an estrus scoring system in Angora goats with different PMSG doses during the breeding season. Does (n: 260) were randomly divided into three groups: group-1 (n: 93), group-2 (n: 85) and group-3 (n: 82). All animals received an intravaginal sponge on day 0 for 11 days, and on the day of sponge insertion 150 μg prostaglandin F2Α was administered. Pregnant mare’s serum gonadotropin was injected 300, 400 and 500 IU intramuscularly 24 h before sponge removal to groups 1, 2 and 3, respectively. Estrus signs were detected with a teaser buck, 24 h after sponge removal according to a visual scoring system. Artificial insemination was performed with 0.25 ml fresh diluted semen at 43 to 45 h after sponge removal. Differences were observed within PMSG groups in terms of standing, tail wagging, courtship behavior, vaginal discharge and vaginal hyperemia (P<0.001). Nevertheless, the most accurate indicators of estrus that result in pregnancy were tail wagging and courtship behavior followed by standing estrus (P<0.05). According to the results obtained, 300 IU PMSG dose is sufficient, both to inseminate at a fixed time (43 to 45 h after sponge removal) and to record the estrus behavior by teaser male 24 h after sponge removal. Higher PMSG doses (400 to 500 IU) altered the timing of ovulation; specifically, 500 IU dose shortened the duration of estrus behaviors. In conclusion, even though the different doses of PMSG displayed similar effects on estrus synchronization and pregnancy rates, we concluded that tail wagging, courtship behavior and standing heat are the most reliable estrus signs for artificial insemination in Angora goat.  相似文献   

10.
The repeatability of superovulatory response and embryo recovery in sheep   总被引:9,自引:0,他引:9  
Over an 8-year period, a total of 328 Scottish Blackface donor ewes were involved in a MOET program. They were synchronized with fluorogestone acetate sponges and superovulated with ovine FSH. After the onset of estrus, ewes were hand-mated and laparoscopic artificial insemination was performed with fresh semen 44-46 h after sponge removal. Embryos were recovered semi-laparoscopically on either Day 5 or Day 6 after insemination. Of the 328 donor ewes used, 222 ewes were supervoulated only once, while the remaining ewes were superovulated either twice (73 ewes), 3 times (26 ewes) or 4 times (7 ewes) at yearly intervals to generate a maximum of 474 records for subsequent analysis. There was no significant change in either mean ovulation rate or the mean number of embryos recovered per donor ewe at successive treatments. However, significant (P < 0.05 at least) effects of both year and donor ewe age existed for superovulatory response and number of embryos recovered, though only the effect of year was significant (P < 0.001) for percentage embryo recovery. Repeatability was significant (P < 0.05 at least) for both superovulatory response (r = 0.55, s.e. 0.055) and number of embryos recovered (r = 0.38, SE 0.074), but not for percentage embryo recovery (r = 0.04, SE 0.102).  相似文献   

11.
Observations were made by repeated laparoscopy to determine the time of ovulation in seven flocks of South Australian Merino ewes treated with pregnant mare serum gonadotropin (PMSG, 400 IU per ewe) and an intravaginal pessary containing 60 mg medroxy-progesterone acetate (MAP). Ovulation most often commenced within 57 h of pessary removal and was completed in all flocks within 81 h. There was, however, significant variation in the time of onset of ovulation; it did not commence until 69 h in one of three observations of Flock 1 and in two of three observations of Flock 2. On the other hand, in a flock of two-year-old nulliparous ewes (Flock 7), ovulation commenced significantly (P < 0.001) earlier than in most observations of other flocks, with 18 39 ewes ovulating within 57 h of pessary removal. The effect of the progestagen (MAP vs flugestone acetate) and the gonadotropin preparation (Pregnecol vs Folligon) on the time of ovulation were observed in separate studies. The characteristic time of ovulation was not influenced in either comparison. However, ovulation occurred significantly (P < 0.001) earlier in ewes treated with progesterone released from a controlled internal drug release dispenser (CIDR). The implications of these findings to artificial insemination and embryo transfer are discussed.  相似文献   

12.
The estrus — ovulation time relationships was examined in Romney ewes treated with progestogen (intravaginal sponge) and gonadotropins (PMSG + HCG or PMSG alone) prior to (January) and during (April) the breeding season. The conception rate of ewes inseminated at predetermined times after treatment was also investigated.Ewes exhibited estrus sooner after sponge removal in April than in January (34.9 v 38.9 hrs, P < 0.001). The interval from sponge removal to ovulation was also shorter in April than in January (56.3 – 62.1 hrs, P < 0.01). There were no significant differences between treatments or season on the mean interval from estrus to ovulation. Types of gonadotropin treatment had no effect on the estrus — ovulation time relationships. There were no significant effects of season, hormone treatment or time of insemination on lambing rate.  相似文献   

13.
An experiment was conducted to determine whether factors affecting pregnancy rate out-of-season are associated more with transcervical artificial insemination (T-AI) procedures or with the reproductive state of the ewe. Twenty Finncross ewes were treated with progesterone sponges, and at sponge removal (0 h) 10 ewes were treated with eCG. Blood samples were collected for LH and progesterone analyses, and follicular development was monitored using ultrasonography. Ewes were inseminated from 48 to 52 h with 200 million motile frozen-thawed spermatozoa. The incidence of estrus, LH surges and ovulation was greater (P < 0.01) and intervals to these responses were shorter (P < 0.01) in the eCG-treated ewes. The number of follicles > 5 mm was higher (P < 0.05) in eCG-treated than control ewes. Progesterone concentrations increased and remained elevated through Day 19 in 7 eCG-treated and in 1 control ewe, and these ewes were pregnant based upon ultrasonographic examination. The results demonstrate that the T-AI technique using frozen-thawed semen produces a relatively high (70%) pregnancy rate out-of-season. The pregnancy rate was found to reflect primarily the reproductive condition of the ewe.  相似文献   

14.
Gonadotropin releasing hormone (GnRH) treatment was examined as a means of improving the efficacy of embryo collection in the sheep following intrauterine insemination of frozen-thawed semen. In summary, treatment consistently improved fertilization rates and the number of fertilized ova collected per ewe was enhanced compared with untreated ewes. The yield of fertilized ova in ewes treated with follicle stimulating hormone (FSH) was maximized by administering GnRH 36 h after progestagen treatment; 24 h was the preferred time in ewes treated with pregnant mare serum gonadotropin (PMSG). There was a significant (P < 0.001) increase in the percentage of unfertilized ova in the former treatment when GnRH was given at 24 h. An examination of the time of insemination (0, 6, 12 and 18 h before the median time of ovulation) indicated that fertilization rates were highest when insemination occurred at 6 h in both GnRH-treated ewes and in untreated ewes. In GnRH-treated ewes, the recovery of ova was lowest when insemination occurred at the time of ovulation. The number of motile frozen-thawed spermatozoa required for fertilization following treatment was estimated to be approximately 20 x 10(6) per uterine horn. GnRH-treatment also improved the yield of fertilized ova in sheep that were naturally mated, although this yield was lower than that obtained with intrauterine insemination of frozen-thawed semen. It is concluded that fertilization failure, a major problem in sheep embryo collection, can be eliminated through judicious use of GnRH treatment and properly timed intrauterine insemination.  相似文献   

15.
Hair sheep ewes (St. Croix White and Barbados Blackbelly) were used to evaluate 3 methods of estrus synchronization for use with transcervical artificial insemination (TAI). To synchronize estrus, ewes (n = 18) were treated with PGF2alpha (15 mg, im) 10 d apart, with controlled internal drug release (CIDR) devices containing 300 mg progesterone for 12 d (n = 18), or with intravaginal sponges containing 500 mg progesterone for 12 d (n = 18). On the day of the second PGF2alpha injection or at CIDR or sponge removal, sterile rams were placed with the ewes. Jugular blood samples were collected from the ewes at 6-h intervals until the time of ovulation, and daily for 16 d after estrus (Day 0). Plasma was harvested and stored at -20 degrees C until LH, and progesterone concentrations were determined by RIA. There was no difference (P>0.10) in time to estrus among the CIDR-, PGF2alpha- or sponge-treated ewes. All of the ewes in the CIDR group and 94.4% of the sponge treated ewes exhibited estrus by 36 h after ram introduction, while only 72.2% of PGF2alpha-treated ewes showed signs of estrus by this time (P<0.06). The time from ram introduction to ovulation was not different (P>0.10) among the CIDR-, PGF2alpha- or sponge-treated ewes. The time to the preovulatory LH surge was similar (P>0.10) among CIDR, PGF2alpha and sponge treated ewes. Progesterone levels through Day 16 after the synchronized estrus were not different (P>0.10) among treatment groups. Hair sheep ewes (n = 23) were synchronized using PGF2alpha and bred by TAI using frozen-thawed semen 48 h after the second injection. The conception rate to TAI was 2/23 (8.7%) and produced 3 ram lambs. In a subsequent trial, 17 ewes were synchronized with CIDR devices and bred by TAI using frozen-thawed semen 48 h after CIDR removal, resulting in a conception rate of 52.9% (9/17). It is possible to synchronize estrus in hair sheep using either CIDRs, sponges or PGF2alpha. Even though there were no significant differences in the timing of ovulation or the LH surge among the treatment groups, a higher conception rate was achieved in ewes synchronized with CIDR devices during the second trial. This may reflect an increase in the skill level of the TAI technician.  相似文献   

16.
This study was conducted at Belen de Escobar, Argentina, in March and April 1987. Experimental work on synchronization of estrus, deep-freeze conservation of ram semen and small fertility trials involving cervical and intrauterine (i.u.) insemination methods was undertaken. A total of 80 Corriedale ewes were used in seven insemination trials. Insemination trials were grouped into two experimental groups for comparison of 1) frozen semen diluted with an experimental extender and a control diluent inseminated cervically or i.u. in synchronized/superovulated ewes and 2) cervical insemination of fresh diluted or frozen semen in ewes inseminated at natural estrus or in ewes that were synchronized/superovulated. An overall ovulation rate of 8.7 +/- 0.5 was obtained by using a superovulatory regimen consisting of 3 mg Norgestomet implants and a total dose of 18 mg follicle stimulating hormone-pituitary (FSH-P). Numbers of ova recovered per ewe following superovulation ranged from 4.3 to 5.4. In experimental Group I, fertilization rates improved when laparoscopic intrauterine AI was used compared with cervical insemination (P<0.05). Fertility rates of i.u. and cervical insemination of frozen semen diluted with the experimental extender showed satisfactory fertilizing capacity. In experimental Group II, a lower number of fertilized ova were recovered from ewes inseminated with frozen semen (P<0.02), irrespective of their estrus manipulation.  相似文献   

17.
The main objective of this study was to investigate the effectiveness of certain progestagen-gonadotrophin treatments on synchronization of estrus in sheep. In Experiment I, 30 Chios ewes were treated at the beginning of the breeding season with medroxyprogesterone acetate (MAP) intravaginal sponges for 12 days and a single i.m. treatment of either FSH (Group 1,10 IU, n = 8; Group 2, 5 IU, n = 8; Group 3, 2.5 IU, n = 8) or eCG (Group 4, 400 IU, n = 6) at the time of sponge removal. Ten days after sponge removal laparotomy was performed to record ovarian response. Clinical estrus was observed in more (though not at a significant level) FSH treated than eCG treated sheep (62.5% versus 33.3%). Administration of 400 IU eCG resulted in the highest mean number of CL perewe ovulating (2.8 +/- 0.2), with administration of 10 IU FSH producing the next best results (2.1 +/- 0.3). Statistically significant differences in the mean number of CL per ewe ovulating were found only between ewes in Group 3 (1.7 +/- 0.4) and Group 4 (2.8 +/- 0.2) (P < 0.05). In Experiment II, 53 Chios and 30 Berrichon ewes were treated during the mid-breeding season with MAP intravaginal sponges for 12 days and a single i.m. treatment of either 10 IU FSH (27 Chios and 16 Berrichon ewes) or 400 IU eCG (26 Chios and 14 Berrichon ewes), at the time of sponge removal. Ewes that were in estrus on Days 2-4 and 19-23 after sponge removal were mated to fertile rams. No significant differences were recorded between treatment or breed groups in the proportions of ewes observed in estrus after treatment. In the Berrichon breed, FSH administration resulted in higher lambing rates (93.8% versus 57.1%, P < 0.05) and higher mean number of lambs born per ewe exposed to rams (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05) than that of eCG. After treatment with eCG, the mean number of lambs born per ewe exposed to rams was higher in the Chios than the Berrichon breed (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05). After treatment with FSH, the lambing rate was higher in the Berrichon than the Chios breed (93.8% versus 63.0%, P < 0.05). In conclusion, a single FSH treatment (5 or 10 IU) at the end of progestagen treatment appears to be more effective than eCG for the induction of synchronized estrus in sheep at the beginning of the breeding season, with no cases of abnormal ovarian response observed. During the mid-breeding season FSH (10 IU) appears to be equally as effective as eCG (400 IU) in respect of lambing rate and mean number of lambs born per ewe.  相似文献   

18.
Ram effect, defined as shortening of seasonal anestrus in ewes by exposure to the ram, is now well recognized but the underlying mechanisms are still unclear. Little information also exists whether the ram is able to influence the estrus cycle and ovulation. Three experiments were conducted to investigate endocrine response, time of ovulation and pregnancy rate of ewes in proestrus, exposed to the ram (treated) or an adult ewe (control). In the first experiment, ewes (n = 20) were treated with fluorgestone acetate pessaries for 12 days and were given eCG and cloprostenol one day before withdrawal of pessaries. On the day after removal of the pessaries ewes in the treated group (n = 10) were exposed to the ram and those in the control group (n = 10) were exposed to an adult ewe. Blood samples were taken for LH assay every 20 min from 2 h before to 24 h after ram exposure. In the second experiment, ewes (n = 120) were induced into proestrus and on the day after removal of the pessaries were exposed to either a ram (n = 60) or a ewe (n = 60) as described above and were laparoscoped 50, 60 or 70 h after pessary withdrawal (n = 20 at each time interval). In the third experiment ewes (n = 90) were induced and exposed to the ram (n = 45) or an adult ewe (n = 45) and inseminated via a laparoscope whit frozen-thawed semen at 50 or 60 h after pessary removal, respectively. Exposure to the ram was followed in 2 h by a marked rise in LH, equivalent to a preovulatory surge in duration and amplitude. It was also followed by concentrated ovulation within 25 to 30 h and by an increased pregnancy rate in exposed ewes (73.3 vs. 53.3%).  相似文献   

19.
Three experiments were conducted to examine the effect of dose of inseminate, number of uterine horns inseminated and site of insemination on subsequent fertility of Merino ewes after synchronisation of oestrus, with progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG, and intrauterine insemination with frozen-thawed semen.The percentages of ewes lambing after insemination with 0.5, 5, 25 and 50 × 106 spermatozoa were 29.3, 26.8, 56.3 and 62.1% respectively. A similar trend was observed in a second test resulting in 23.5, 38.8 and 53.1% ewes lambing after insemination with 5, 10 and 20 × 106 spermatozoa respectively.The percentage of ewes lambing was higher for ewes inseminated in two uterine horns than one horn (76.8 vs. 44.9, P < 0.001). When semen was deposited in the tip, middle and bottom of the uterine horn, the percentages of ewes lambing and lambs born per ewe inseminated were 43.6 and 52.7, 52.8 and 84.9, and 41.2 and 64.7% respectively. Although site of insemination did not affect the percentage of ewes lambing, the percentage of lambs born per ewe inseminated was higher after insemination in the middle of the uterine horn than at the other sites (P < 0.001).  相似文献   

20.
A comparison was made of the relative effectiveness of sponge pessaries impregnated with 40mg flourogestone acetate (FGA) or 60mg medroxyprogesterone acetate (MAP) to induce a synchronized estrus in ewes. Ewes were treated with sponge pessaries for 14 days and 500 IU pregnant mares' serum gonadotropin was injected i.m. at the time of sponge removal. The degree and pattern of mating response of ewes were similar, irrespective of the treatment used, approximately 92% of the ewes being marked by the ram by 72h after sponge removal. No significant differences in fertility or litter size were observed between the treatment groups. Ewes treated with FGA sponges had a fertility of 53% and litter size of 2.3 after mating at the synchronized estrus. The corresponding values for ewes treated with MAP sponges were 57% and 2.1. Use of MAP sponges was associated with a 17.8% sponge loss during treatment compared with 1% sponge loss in ewes treated with FGA sponges. Such losses could compromise the use of MAP sponges by reducing their overall efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号