首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
水淹对钉螺卵影响的透射电镜观察   总被引:2,自引:0,他引:2  
春汛期钉螺繁殖期在洞庭湖现场进行水淹螺卵试验,观察螺卵结构的动态变化。结果显示,对照组螺卵胶膜由胶原纤维层和基底膜组成,卵细胞核大,呈圆形或椭圆形,染色质丰富,细胞内含丰富线粒体、内质网和分泌颗粒等。水淹10d时,结构尚未见明显变化;至20d时,胶膜胶原纤维横纹不清,断裂有空洞,线粒体肿胀,嵴结构不清,核内染色质减少;30d时,出现核固缩或崩解,线粒体消失。说明在螺卵发育期水淹能很快使其发生病理损  相似文献   

2.
利用组织切片和透射电镜观察细角螺卵细胞发育的显微和超微结构,结果表明:细角螺卵原细胞期细胞核体积较大,呈椭圆形,核膜明显且有不规则的凹陷,细胞质内出现大量的线粒体和高尔基体.根据卵黄颗粒物的多少和大小可将卵母细胞分为前、中、后三个时期:前期卵母细胞细胞核内染色质浓缩,核仁可见,并出现核周间隙;中期卵母细胞内细胞核移向细胞的一端,核内染色质仍呈高电子密度状态,核仁不明显或消失;后期卵母细胞内的细胞核受挤压形状变得不规则,细胞质内可见少量的线粒体,大量的卵黄颗粒聚集在细胞质中并融合成很大的卵黄球.成熟期卵母细胞卵黄物质多且有较大的脂滴.  相似文献   

3.
长江华溪蟹卵子发生的细胞化学研究   总被引:6,自引:2,他引:4  
利用细胞化学的方法,对长江华溪蟹卵子发生过程中,核酸、蛋白质、糖类及脂类的变化进行了研究,结果表明:核酸从卵原细胞到卵母细胞的发育进程中逐渐分散;蛋白质的量不断增加;脂类物质也在慢慢积累,伴随着发育,在成熟的卵母细胞质内充满PAS阳性反应的卵黄颗粒。  相似文献   

4.
以生物素标记的凝集素(UEA-I、SBA、PNA)为探针,利用凝集素组织化学方法对短额负蝗(Atracto-morphasinensis)卵子发生过程中滤泡细胞和卵母细胞内糖复合物的分布进行了定位研究。结果表明,在卵子发生的各期滤泡细胞和卵母细胞中没有UEA-I受体的表达,SBA和PNA受体以不同的分布模式呈阶段性表达。两者首次出现于卵母细胞生长期,随后PNA受体消失,SBA受体大量表达;在卵黄形成期前期SBA受体和重新出现的PNA受体表达于卵黄颗粒形成部位,卵黄形成期后期两者均为阴性表达;成熟卵子中两种受体又以不同程度重新出现于卵黄膜。两种受体在滤泡细胞内均大量表达。提示,N-乙酰半乳糖胺和半乳糖-β-(1,3)半乳糖胺复合物的修饰和变化与卵母细胞的发育、卵黄物质的形成及滤泡细胞的增殖分化密切相关,卵黄膜上的糖复合物可能与精卵识别有关。  相似文献   

5.
锯缘青蟹卵黄发生期卵母细胞和卵泡细胞之间的结构变化   总被引:24,自引:0,他引:24  
通过电镜研究了锯缘青蟹二次卵巢发育过程中卵黄发生期(分为初期和后期)卵母细胞表面的结构和胞质的变化。卵黄发生初期分为:内源性卵黄发生阶段和有卵泡细胞直接参与的外源性卵黄合成阶段,前者特征为:在卵母细胞中充满了内质网泡,在泡内有不同程度的卵黄物质合成,此时在卵母细胞的表面区域,可见很多卵泡细胞向卵母细胞表面迁移,并包围卵母细胞。后者其特征是在卵母细胞的表面,有大量的胞饮小泡出现在卵膜的内面,随着两细胞表面膜的逐步融合和胞饮作用加强最后形成链锁状结构,胞质中靠近卵质周围有卵黄体的积极合成和大更换 脂肪滴积累,在此阶段的后期,卵泡细胞质已基本吸收完毕,卵泡细胞膜和卵母细胞膜融合,某些界面已无膜结构。卵黄发生后期在亲蟹孵出幼体后的第11d至第27d基本结束,此期也主要以外源性卵黄发生为主,在卵母细胞的周围,卵泡细胞迅速扩大,其间分布着大量的大小不同的囊泡和线粒体,在接近卵母细胞表面,还常可见大量的脂肪滴存在。卵泡细胞与卵母细胞间其膜结构完全消失,从而可使滤泡大片细胞质直接融入卵母细胞中,以后随着卵黄发生的进一步发展,卵母细胞与卵泡细胞的交界面逐步形成一个网状的膜结构屏障,同时在卵巢中可见正在降解的卵母细胞,在卵黄发生近结束以后,在卵母细胞的表面,逐步形成两层卵膜,这时的卵母细胞质中几乎充满了卵黄体和脂肪滴。  相似文献   

6.
以生物素标记的凝集素(UEA-I、SBA、PNA)为探针,利用凝集素组织化学方法对短额负蝗(Atractomorpha sinensis)卵子发生过程中滤泡细胞和卵母细胞内糖复合物的分布进行了定位研究。结果表明,在卵子发生的各期滤泡细胞和卵母细胞中没有UEA-I受体的表达,SBA和PNA受体以不同的分布模式呈阶段性表达。两者首次出现于卵母细胞生长期, 随后PNA受体消失,SBA受体大量表达;在卵黄形成期前期SBA受体和重新出现的PNA受体表达于卵黄颗粒形成部位,卵黄形成期后期两者均为阴性表达;成熟卵子中两种受体又以不同程度重新出现于卵黄膜。两种受体在滤泡细胞内均大量表达 提示,N-乙酰半乳糖胺和半乳糖-β-(1,3)半乳糖胺复合物的修饰和变化与卵母细胞的发育、卵黄物质的形成及滤泡细胞的增殖分化密切相关,卵黄膜上的糖复合物可能与精卵识别有关。  相似文献   

7.
中国大鲵卵母细胞发育的显微和超微结构   总被引:11,自引:0,他引:11  
用光镜和电镜观察了大鲵卵母细胞在发育过程中的显微和超微结构变化,着重对类核周体结构和线粒体与卵黄前颗粒的关系进行了详尽观察。贴近卵核的类核周体由核仁样体和线粒体群构成,远离卵核的类核周体仅由线粒体群构成。线粒体群是线粒增殖区,其中有多种形态的原线粒体,有些处于增殖状态,它们未形成明显的线粒体嵴。散在于卵质中的线粒体是成的线料体,有明显的嵴,其中许多线粒体内沉积着致密物质,一些致密物质从线粒体中向外  相似文献   

8.
线粒体是具有双层膜结构的动态细胞器,它是真核生物细胞内能量合成的重要场所。线粒体内膜向线粒体基质处突起形成线粒体嵴,线粒体嵴在线粒体内整齐有序地排列,是线粒体内产生ATP的重要场所,但关于嵴的形成机制和生物学功能知之甚少。近年来新发现的MICOS复合物被认为是调控线粒体嵴形态的关键复合物,并且发现MICOS复合物在细胞中发挥多种线粒体相关的生物学功能。该文重点介绍MICOS复合物的各个亚基蛋白和特性以及MICOS复合物的重要功能及其与人类重大疾病的关系,以促进对于MICOS复合物的认识及探索。  相似文献   

9.
莫桑比克非鲫卵黄形成的电镜观察   总被引:21,自引:0,他引:21  
运用透射电镜观察了莫桑比克非鲫卵母细胞的生长.根据卵母细胞的大小和内部结构特征,将其分为四个时期:卵母细胞生长早期:卵黄泡形成期:卵黄积累期:卵黄积累完成期.本文着重研究了主要卵黄成分--卵黄球的形成过程.卵黄球属外源性卵黄,由卵母细胞通过微胞饮作用吸收肝脏合成的卵黄蛋白原后形成的.在卵黄大量积累前,卵母细胞内的线粒体和多泡体聚集成团,构成卵黄核,继而线粒体大量增殖,线粒体形状发生改变,形成同心多层膜结构,为大量的卵黄物质积累提供场所.最终形成的卵黄球由被膜、卵黄结晶体和两者之间的非结晶区三部分组成.    相似文献   

10.
Mitofilin是一种线粒体内膜蛋白,与多种线粒体蛋白相互作用,共同参与线粒体内膜嵴形态的维持、线粒体内蛋白质的转运过程等。干扰mitofilin~表达不仅引起线粒体结构的异常,而且明显抑制了线粒体功能的正常发挥。最近的研究表明,在多种疾病中mitonlin都异常表达,从而导致线粒体结构的完整性和功能的障碍,促进了疾病的发生发展。  相似文献   

11.
A U Larkman 《Tissue & cell》1984,16(3):393-404
The appearance and arrangement of the mitochondria during all stages of oocyte growth in the sea anemone Actinia fragacea (Cnidaria: Anthozoa) have been examined by electron microscopy. In small oocytes, the mitochondria are generally squat, with a dense matrix and numerous cristae, although a proportion may show an unusual arrangement of prismatic cristae. During early oogenesis, the mitochondria tend to be arranged in aggregates rather than randomly scattered, and may be associated with nuage material. With the onset of vitellogenesis, a large mitochondrial aggregate forms next to the nucleus. During early vitellogenesis this aggregate enlarges and comes to resemble the mitochondrial clouds found in some amphibian oocytes. Within the cloud, many mitochondria appear to be highly elongate and irregular in shape. The cloud begins to fragment and disperse midway through vitellogenesis at about the time when cortical granules appear. In fully grown oocytes, some mitochondria may have a much less dense matrix and fewer cristae than the remainder, which may be related to their state of activity.  相似文献   

12.
ABSTRACT Fine structural changes of the ovary and cellular composition of oocyte with respect to ovarian development in the orb-web spider, Nephila clavata were examined by scanning and transmission electron microscopy. Unlike the other arthropods, the ovary of this spider has only two kinds of cells-follicle cells and oocytes. During the ovarian maturation, each oocyte bulges into the body cavity and attaches to surface of the elongated ovarian epithelium through its peculiar short stalk attachments. In the cytoplasm of the developing oocyte two main types of yolk granules, electron-dense proteid yolk and electron-lucent lipid yolk granules, are compactly aggregated with numerous glycogen particles. The cytoplasm of the developing oocyte contains a lot of ribosomes, poorly developed rough endoplasmic reticulum, mitochondria and lipid droplets. These cell organelles, however, gradually degenerate by the later stage of vitellogenesis. During the active vitellogenesis stage, the proteid yolk is very rapidly formed and the oocyte increases in size. However, the micropinocytosis invagination or pinocytotic vesicles can scarcely be recognized, although the microvilli can be found in some space between the oocyte and ovarian epithelium. During the vitellogenesis, the lipid droplets in the cytoplasm of oocytes increase in number, and become abundant in the peripheral cytoplasm close to the stalks. On completion of the yolk formation the vitelline membrane, which is composed of an inner homogeneous electron-lucent component and an outer layer of electron-dense component is formed around the oocyte.  相似文献   

13.
Oogenesis within the hologonic ovary of the trichuroid nematode, Trichuris muris, was observed by light and electron microscopy. Early germinal stages in the form of oogonia and young primary oocytes were characterised by a high nuclear-cytoplasmic ratio, numerous ribosomes and several mitochondrial clusters. Previtellogenic primary oocytes contained a prominent nucleus with a nuclear envelope punctuated by pores. They also contained increased amounts of granular endoplasmic reticulum (GER), often arranged as annulate lamellae, several Golgi complexes and limited amounts of lipid. The appearance of three types of cytoplasmic inclusion, in the form of lipid, dense yolk granules and reticulate granules, indicated the onset of vitellogenesis. At this stage of oogenesis, all three types were distributed throughout the ooplasm. The possible role of the granules is discussed. During passage along the oviduct the oocyte was coated by an additional unit membrane and associated fibrillar layer external to the oolemma. It is suggested that this may be synthesised by the oocyte.  相似文献   

14.
The histology of the ovotestis was studied by light and electron microscopy in two nudibranch gastropod species. While in Hypselodoris tricolor the ovotestis is intimately associated with the digestive gland tissue, the large gonadal mass of Godiva banyulensis is placed freely in the haemocoele. This fact results in great histological differences between both species. As is common among Mollusca, the immature yolk granule in Hypselodoris and Godiva presumably originates from membrane-rich cytoplasmic inclusions, which we have termed dense multivesicular bodies. Such inclusions consist of an outer membrane enclosing membrane remnants and a granular, electron-dense material. These elements are accumulated and mixed in the center of the dense multivesicular body and could be actually transformed into the paracrystalline core of the immature yolk granule, the cortex of which is made up of part of the central accumulation materials that have not spread into the crystal. During vitellogenesis, some mitochondria are subjected to a process of transformation affecting mainly their inner membrane (including mitochondrial cristae) and matrix. However, the conversion of modified mitochondria into yolk precursors, as reported for other gastropod species, could not be determined with absolute certainty on the basis of our observations on static material. The mature yolk granule consists of a central paracrystalline core, similar in structure to that of the immature yolk granule, and a peripheral membranous cortex, which seems to spread centripetally, thus permitting the crystal to grow. The cortical material consumed in synthesizing the central core appears to be restored by addition of degenerative mitochondria to the yolk granule surface.  相似文献   

15.
Several components of the female reproductive system of Pharyngostomoides procyonis, including the vitellaria and vitelline duct, ovary and oviduct, Laurer's canal, and Mehlis' gland and associated ducts, were observed with the electron microscope. Vitelline follicles contain cells in various stages of development. Mature vitelline cells contain membrane-delimited clusters of vitelline globules near the plasma membrane. Cilia are present in the vitelline duct. The ovary contains germ cells in various stages of maturation. Oogonia are found in the peripheral region. Mature oocytes contain numerous dense bodies near the plasmalemma. Also included in the cytoplasm of mature oocytes are "nucleolus-like bodies," myelin-like bodies, and mitochondria containing dense granules and few cristae. The epithelium of the oviduct is ciliated. Sperm are present in the oviduct and in Laurer's canal. Two types of secretory cells found in Mehlis' gland are described.  相似文献   

16.
秀丽白虾卵母细胞不同发育阶段滤泡细胞的超微结构   总被引:4,自引:0,他引:4  
用透射电镜技术观察了秀丽白虾(Exopalaemon modestus)不同发育阶段卵巢滤泡细胞的超微结构及其与卵母细胞的联系。随着卵母细胞的发育进程,滤泡细胞经历了发育和退化过程。在卵黄大量发生期,卵母细胞被多层滤泡细胞包绕,血窦伸入层间;滤泡细胞内含有丰富的内质网、高尔基体、线粒体、核糖体及原始卵黄颗粒。在卵子成熟期,滤泡细胞由内向外依次解体,血窦萎缩。这些形态变化支持滤泡细胞具有吸收血液营养、合成并向卵母细胞输送原始卵黄物质的功能的观点。与锯缘青蟹、长毛对虾和中华绒螯蟹的滤泡细胞的作用方式稍有不同。  相似文献   

17.
The formation of protein-carbohydrate yolk in the statoblast of a fresh-water bryozoan, Pectinatella gelatinosa, was studied by electron microscopy. Two types (I and II) of yolk cells were distinguished. The type I yolk cells are mononucleate and comprise a large majority of the yolk cells. The type II yolk cells are small in number; they become multinucleate by fusion of cells at an early stage of vitellogenesis. In both types of yolk cells, electron-dense granules (dense bodies) are formed in Golgi or condensing vacuoles, which are then called yolk granules. For the formation of yolk granules, the following processes are considered: 1. Yolk protein is synthesized in the rough-surfaced endoplasmic reticulum (RER) of the yolk cells. 2. The synthesized protein condenses in the cisternal space of the RER and is packaged into small oval swellings, which are then released from the RER as small vesicles (Golgi vesicles, 300-600 A in diameter). 3. The small vesicles fuse with one another to form condensing vacuoles, or with pre-existing growing yolk granules. 4. In the matrix of the condensing vacuoles or growing yolk granules, electron-dense fibers are fabricated and then arranged in a paracrystalline pattern to form the dense body. 5. After the dense body reaches its full size, excess membrane is removed and eventually the yolk granules come to mature. Toward the end of vitellogenesis of the yolk cells, the cytoplasmic organelles are ingested by autophagosomes derived from multivesicular bodies and disappear.  相似文献   

18.
Yolk formation in the oocytes of the free-living, marine copepod, Labidocera aestiva (order Calanoida) involves both autosynthetic and heterosynthetic processes. Three morphologically distinct forms of endogenous yolk are produced in the early vitellogenic stages. Type 1 yolk spheres are formed by the accumulation and fusion of dense granules within vesicular and lamellar cisternae of endoplasmic reticulum. A granular form of type 1 yolk, in which the dense granules within the cisternae of endoplasmic reticulum do not fuse, appears to be synthesized by the combined activity of endoplasmic reticulum and Golgi complexes. Type 2 yolk bodies subsequently appear in the ooplasm but their formation could not be attributed to any particular oocytic organelle. In the advanced stages of vitellogenesis, a single narrow layer of follicle cells becomes more developed and forms extensive interdigitations with the oocytes. Extra-oocytic yolk precursors appear to pass from the hemolymph into the follicle cells and subsequently into the oocytes via micropinocytosis. Pinocytotic vesicles fuse in the cortical ooplasm to form heterosynthetically derived type 3 yolk bodies.  相似文献   

19.
Oocyte differentiation in the polyclad turbellarian Prostheceraeus floridanus has been examined to determine the nature of oogenesis in a primitive spiralian. The process has been divided into five stages. (1) The early oocyte: This stage is characterized by a large germinal vesicle surrounded by dense granular material associated with the nuclear pores and with mitochondria. (2) The vesicle stage: The endoplasmic reticulum is organized into sheets which often contain dense particles. Vesicles are found in clusters in the cytoplasm, some of which are revealed to be lysosomes by treatment with the Gomori acid phosphatase medium. (3) Cortical granule formation: Cortical granules are formed by the fusion of filled Golgi vasuoles which have been released from the Golgi saccules. The association between the endoplasmic reticulum and Golgi suggests that protein is synthesized in the ER and transferred to the Golgi where polysaccharides are added to form nascent cortical granules. (4) Yolk synthesis: After a large number of cortical granules are synthesized, yolk bodies appear. They originate as small membrane-bound vesicles containing flocculent material which subsequently increase in size and become more compact. Connections between the forming yolk bodies and the endoplasmic reticulum indicate that yolk synthesis occurs in the ER. (5) Mature egg: In the final stage, the cortical granules move to the periphery and yolk platelets and glycogen fill the egg. At no time is there any evidence of uptake of macromolecules at the oocyte surface. Except for occasional desmosomes between early oocytes, no membrane specialization or cell associations are seen throughout oogenesis. Each oocyte develops as an independent entity, a conclusion supported by the lack of an organized ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号