首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kassem M  Marie PJ 《Aging cell》2011,10(2):191-197
Human aging is associated with bone loss leading to bone fragility and increased risk of fractures. The cellular and molecular causes of age-related bone loss are current intensive topic of investigation with the aim of identifying new approaches to abolish its negative effects on the skeleton. Age-related osteoblast dysfunction is the main cause of age-related bone loss in both men and women beyond the fifth decade and results from two groups of pathogenic mechanisms: extrinsic mechanisms that are mediated by age-related changes in bone microenvironment including changes in levels of hormones and growth factors, and intrinsic mechanisms caused by the osteoblast cellular senescence. The aim of this review is to provide a summary of the intrinsic senescence mechanisms affecting osteoblastic functions and how they can be targeted to abolish age-related osteoblastic dysfunction and bone loss associated with aging.  相似文献   

2.
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.  相似文献   

3.
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.Subject terms: Senescence, Endocrine system and metabolic diseases  相似文献   

4.
Most cellular processes descend into failure during aging. While a large collection of longevity pathways has been identified in the past decades, the mechanism for age-related decline of cellular homeostasis and organelle function remains largely unsolved. It is known that many organelles undergo structural and functional changes during normal aging, which significantly contributes to the decline of tissue function at old ages. Since recent studies have revealed an emerging role of organelles as regulatory hubs in maintaining cellular homeostasis, understanding of organelle aging will provide important insights into the cellular basis of organismal aging. Here we review current progress on the characterization of age-dependent structural and functional alterations in the more well-studied organelles, as well as the known mechanisms governing organelle aging in model organisms, with a special focus on the fruit fly Drosophila melanogaster.  相似文献   

5.
Changes in DNA repair during aging   总被引:7,自引:1,他引:6  
DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old.  相似文献   

6.
Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging.  相似文献   

7.
8.
As we enter the 21st century, the segment of the population that is the most rapidly expanding is that comprised of individuals 85 yr of age and older. Dysfunctions of the gastrointestinal (GI) system, including dysphagia, constipation, diarrhea, and irritable bowel syndrome are more common complaints of the elderly, yet our knowledge of the aging GI tract is incomplete. Compared with the rapid advances in the neurobiology of aging in the central nervous system, the understanding of age-related changes in the enteric nervous system (ENS) is poor. In this brief review, I recap experiments that reveal neurodegenerative changes and their functional correlates in the ENS of mice, rats, and guinea pigs. Clinical literature seems indicative of similar structural and functional age-related changes in the human ENS. Current studies that address the mechanisms underlying age-related changes in the ENS are introduced. The future directions for this field include physiological and pharmacological studies, especially at cellular and molecular levels. Research in the aging ENS is poised to make major advances, and this new knowledge will be useful for clinicians seeking to better understand and treat GI dysfunction in the elderly.  相似文献   

9.
10.
The contribution of cellular senescence to the behavioral changes observed in the elderly remains elusive. Here, we observed that aging is associated with a decline in protein phosphatase 2A (PP2A) activity in the brains of zebrafish and mice. Moreover, drugs activating PP2A reversed age-related behavioral changes. We developed a transgenic zebrafish model to decrease PP2A activity in the brain through knockout of the ppp2r2c gene encoding a regulatory subunit of PP2A. Mutant fish exhibited the behavioral phenotype observed in old animals and premature accumulation of neural cells positive for markers of cellular senescence, including senescence-associated β-galactosidase, elevated levels cdkn2a/b, cdkn1a, senescence-associated secretory phenotype gene expression, and an increased level of DNA damage signaling. The behavioral and cell senescence phenotypes were reversed in mutant fish through treatment with the senolytic ABT263 or diverse PP2A activators as well as through cdkn1a or tp53 gene ablation. Senomorphic function of PP2A activators was demonstrated in mouse primary neural cells with downregulated Ppp2r2c. We conclude that PP2A reduction leads to neural cell senescence thereby contributing to age-related behavioral changes and that PP2A activators have senotherapeutic properties against deleterious behavioral effects of brain aging.  相似文献   

11.
The worldwide prolongation of mean life expectancy has resulted in a rapid increase of the size of the elderly population, both in numbers and as a proportion of the whole. In addition, the incidence of age-related diseases is obviously increasing as the population ages. Finding means to preserve optimal health in old age has become a primary goal of biomedical research. Aging is a multifactorial process that includes progressive cellular loss, endocrine and metabolic deficits, reduced defense mechanisms and functional losses that increase the risk of death. Mitochondria fulfill a number of essential cellular functions and play a key role in the aging process. Melatonin, which is synthesized in the pineal gland and other organs, plays a role in the biologic regulation of aging. Noctural melatonin serum levels are high during childhood and diminish substantially as people age. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels; it also safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. In this article, we review the role of melatonin and mitochondria in aging.  相似文献   

12.
SYNOPSIS. The endocrinology of reproductive aging in avian specieshas been described primarily in captive domestic birds, suchas the Japanese quail (Coturnix japonica), which show majorchanges in hormones and reproductive performance. To explorereproductive aging in longer-lived avian species, longitudinalstudies are being conducted on the Common Tern (Sterna hirundo)in which age-related changes in nesting patterns and clutchsize have been monitored. However, little information is availablerelevant to endocrine status of breeding pairs of Common Terns.This review summarizes information pertinent to the breedingbiology and endocrine status of the Common Tern during reproductiveaging and compares these findings to data available from theJapanese quail. Fundamental mechanisms in the process of agingin avian species may become apparent in the comparison of thesedata and data from field species.  相似文献   

13.
The mechanisms of aging are not well understood in animals with continuous growth such as fish, reptiles, amphibians and numerous invertebrates, including mollusks. We studied the effects of age on oxidative stress, cellular defense mechanisms (including two major antioxidant enzymes, superoxide dismutase (SOD) and catalase), and molecular chaperones in two mollusks--eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria. In order to detect the age-related changes in these parameters, correction for the effects of size was performed where appropriate to account for growth-related dilution. Fluorescent age pigments accumulated with age in both species. Protein carbonyls did not change with age or size indicating that they are not a good marker of aging in mollusks possibly due to the fast turnover and degradation of oxidized proteins in growing tissues. SOD did not show a compensatory increase with aging in either species, while catalase significantly decreased with age. Mitochondrial heat shock protein (HSP60) decreased with age in mollusks suggesting an age-related decline in mitochondrial chaperone protection. In contrast, changes in cytosolic chaperones were species-specific. HSP70 increased and HSP90 declined with age in clams, whereas in oysters HSP70 expression did not change, and HSP90 increased with aging.  相似文献   

14.
Choi NH  Kim JG  Yang DJ  Kim YS  Yoo MA 《Aging cell》2008,7(3):318-334
Age-associated changes in stem cell populations have been implicated in age-related diseases, including cancer. However, little is known about the underlying molecular mechanisms that link aging to the modulation of adult stem cell populations. Drosophila midgut is an excellent model system for the study of stem cell renewal and aging. Here we describe an age-related increase in the number and activity of intestinal stem cells (ISCs) and progenitor cells in Drosophila midgut. We determined that oxidative stress, induced by paraquat treatment or loss of catalase function, mimicked the changes associated with aging in the midgut. Furthermore, we discovered an age-related increase in the expression of PVF2, a Drosophila homologue of human PDGF/VEGF, which was associated with and required for the age-related changes in midgut ISCs and progenitor cell populations. Taken together, our findings suggest that PDGF/VEGF may play a central role in age-related changes in ISCs and progenitor cell populations, which may contribute to aging and the development of cancer stem cells.  相似文献   

15.
16.
Downregulation of insulin-like growth factor (IGF) pathways prolongs lifespan in various species, including mammals. Still, the cellular mechanisms by which IGF signaling controls the aging trajectory of individual organs are largely unknown. Here, we asked whether suppression of IGF-I receptor (IGF-1R) in adult stem cells preserves long-term cell replacement, and whether this may prevent age-related functional decline in a regenerating tissue. Using neurogenesis as a paradigm, we showed that conditional knockout of IGF-1R specifically in adult neural stem cells (NSC) maintained youthful characteristics of olfactory bulb neurogenesis within an aging brain. We found that blocking IGF-I signaling in neural precursors increased cumulative neuroblast production and enhanced neuronal integration into the olfactory bulb. This in turn resulted in neuro-anatomical changes that improved olfactory function. Interestingly, mutants also displayed long-term alterations in energy metabolism, possibly related to IGF-1R deletion in NSCs throughout lifespan. We explored Akt and ERK signaling cascades and revealed differential regulation downstream of IGF-1R, with Akt phosphorylation preferentially decreased in IGF-1R−/− NSCs within the niche, and ERK pathway downregulated in differentiated neurons of the OB. These challenging experimental results were sustained by data from mathematical modeling, predicting that diminished stimulation of growth is indeed optimal for tissue aging. Thus, inhibiting growth and longevity gene IGF-1R in adult NSCs induced a gain-of-function phenotype during aging, marked by optimized management of cell renewal, and enhanced olfactory sensory function.  相似文献   

17.
衰老会导致视觉功能的退化,但其潜在的神经机制尚不清楚。通过改良Golgi-Cox染色法,测定了青年雄性、青年雌性及老年雄性与老年雌性4组共20只大鼠视皮层的树突长度和树突棘密度,以研究年龄与性别对视皮层树突形态的影响。结果显示青年雄性大鼠视皮层顶树突、基树突、树突总长度均明显高于青年雌性大鼠,但这种性别差异在老年雌雄组之间并不显著,可能是由于在雄性组之间存在着明显的年龄相关性树突长度减少而在雌性组之间并不存在。青年雄性组的树突棘密度要明显高于青年雌性组,尽管衰老导致了青年雄、雌性组的树突棘密度均明显降低,但老年雄、雌性组的树突棘密度并无显著差异,这可能是由于雄性组的年龄相关性树突密度降低程度要远大于雌性组。由此可见衰老确实能导致视皮层树突形态的退化,这可能是老年性视觉功能衰退的潜在神经机制,但这种退化可能具有一定的性别差异。  相似文献   

18.
19.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, for example, atherosclerosis. Angiotensin II (Ang II), a principal effector of the renin-angiotensin system (RAS), an important signaling molecule involved in atherogenic stimuli, is known to promote aging and cellular senescence. In the present study, induction of Ang II promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cells, and depressed cell proliferation. Ang II drastically decreased the expression level of Bcl-2, in part via the activation of extracellular signal-regulated kinase (ERK). Our results suggest that Ang II can induce HUVEC senescence; one of its molecular mechanisms is a probability that the mitogen-activated protein kinase (MAPK) signal pathway is involved in the process of pathological and physiological senescence of endothelial cells as well as vascular aging.  相似文献   

20.
Aging bone and cartilage: cross-cutting issues   总被引:1,自引:0,他引:1  
Aging is a major risk factor for osteoarthritis and osteoporosis. Yet, these are not necessary outcomes of aging, and the relationship between age-related changes in bone and cartilage and development of disease is not clear. There are some well-described cellular changes associated with aging in multiple tissues that appear to be fundamental to the decline in function of cartilage and bone. A better understanding of age-related changes in cells and tissues is necessary to mitigate or, hopefully, avoid loss of bone and cartilage with aging. In addition, a better understanding of the dynamics of tissue maintenance in vivo is critical to developing tissue replacement and repair therapies. The role of stem cells in this process, and why tissues are not well maintained with advancing age, are frontiers for future aging research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号