首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halolysins are subtilisin-like extracellular proteases produced by haloarchaea that possess unique protein domains and are salt dependent for structural integrity and functionality. In contrast to bacterial subtilases, the maturation mechanism of halolysins has not been addressed. The halolysin Nep is secreted by the alkaliphilic haloarchaeon Natrialba magadii, and the recombinant active enzyme has been synthesized in Haloferax volcanii. Nep contains an N-terminal signal peptide with the typical Tat consensus motif (GRRSVL), an N-terminal propeptide, the protease domain, and a C-terminal domain. In this study, we used Nep as a model protease to examine the secretion and maturation of halolysins by using genetic and biochemical approaches. Mutant variants of Nep were constructed by site-directed mutagenesis and expressed in H. volcanii, which were then analyzed by protease activity and Western blotting. The Tat dependence of Nep secretion was demonstrated in Nep RR/KK variants containing double lysine (KK) in place of the twin arginines (RR), in which Nep remained cell associated and the extracellular activity was undetectable. High-molecular-mass Nep polypeptides without protease activity were detected as cell associated and extracellularly in the Nep S/A variant, in which the catalytic serine 352 had been changed by alanine, indicating that Nep protease activity was needed for precursor processing and activation. Nep NSN 1-2 containing a modification in two potential cleavage sites for signal peptidase I (ASA) was not efficiently processed and activated. This study examined for the first time the secretion and maturation of a Tat-dependent halophilic subtilase.  相似文献   

2.
N-glycosylation, a posttranslational modification required for the accurate folding and stability of many proteins, has been observed in organisms of all domains of life. Although the haloarchaeal S-layer glycoprotein was the first prokaryotic glycoprotein identified, little is known about the glycosylation of other haloarchaeal proteins. We demonstrate here that the glycosylation of Haloferax volcanii flagellins requires archaeal glycosylation (Agl) components involved in S-layer glycosylation and that the deletion of any Hfx. volcanii agl gene impairs its swimming motility to various extents. A comparison of proteins in CsCl density gradient centrifugation fractions from supernatants of wild-type Hfx. volcanii and deletion mutants lacking the oligosaccharyltransferase AglB suggests that when the Agl glycosylation pathway is disrupted, cells lack stable flagella, which purification studies indicate consist of a major flagellin, FlgA1, and a minor flagellin, FlgA2. Mass spectrometric analyses of FlgA1 confirm that its three predicted N-glycosylation sites are modified with covalently linked pentasaccharides having the same mass as that modifying its S-layer glycoprotein. Finally, the replacement of any of three predicted N-glycosylated asparagines of FlgA1 renders cells nonmotile, providing direct evidence for the first time that the N-glycosylation of archaeal flagellins is critical for motility. These results provide insight into the role that glycosylation plays in the assembly and function of Hfx. volcanii flagella and demonstrate that Hfx. volcanii flagellins are excellent reporter proteins for the study of haloarchaeal glycosylation processes.  相似文献   

3.
Aims: Haloarchaeal proteases function optimally in high salt (low water activity); thus, they offer an advantage over the nonhalophilic counterparts as biocatalysts for protease‐catalysed peptide synthesis. The haloalkaliphilic archaeon Natrialba magadii secretes a solvent‐tolerant protease, Nep (Natrialba magadii extracellular protease). In this work, the ability of Nep to catalyse peptide synthesis was examined. Methods and Results: The tripeptide Ac‐Phe‐Gly‐Phe‐NH2 was synthesized using Ac‐Phe‐OEt and Gly‐Phe‐NH2 substrates as building blocks in the presence of Nep, 30% (v/v) dimethyl sulfoxide (DMSO) and 1·5 or 0·5 mol l?1 NaCl. Purification and identification of the peptide product was achieved by RP‐HPLC and ESI‐MS, respectively. The native as well as the recombinant enzyme produced in Haloferax volcanii (HvNep) was similarly effective as catalysts for the synthesis of this model tripeptide with yields of up to 60% and without secondary hydrolysis of the product. HvNep catalysed the synthesis of various tripeptides with preference for those having aromatic amino acids in the P1 site. Conclusion: Nep is able to catalyse peptide synthesis under different salt concentrations in the presence of DMSO. Significance and Impact of Study: The catalytic property of Nep in peptide synthesis combined with overproduction of this protease in Hfx. volcanii anticipates the potential applicability of this haloarchaeal protease in biotechnology.  相似文献   

4.
5.
The twin-arginine translocation (Tat) pathway is present in a wide variety of prokaryotes and is capable of exporting partially or fully folded proteins from the cytoplasm. Although diverse classes of proteins are transported via the Tat pathway, in most organisms it facilitates the secretion of a relatively small number of substrates compared to the Sec pathway. However, computational evidence suggests that haloarchaea route nearly all secreted proteins to the Tat pathway. We have expanded previous computational analyses of the haloarchaeal Tat pathway and initiated in vivo characterization of the Tat machinery in a model haloarchaeon, Haloferax volcanii. Consistent with the predicted usage of the this pathway in the haloarchaea, we determined that three of the four identified tat genes in Haloferax volcanii are essential for viability when grown aerobically in complex medium. This represents the first report of an organism that requires the Tat pathway for viability when grown under such conditions. Deletion of the nonessential gene had no effect on the secretion of a verified substrate of the Tat pathway. The two TatA paralogs TatAo and TatAt were detected in both the membrane and cytoplasm and could be copurified from the latter fraction. Using size exclusion chromatography to further characterize cytoplasmic and membrane TatA proteins, we find these proteins present in high-molecular-weight complexes in both cellular fractions.  相似文献   

6.
The targeting of many Sec substrates to the membrane-associated translocation pore requires the cytoplasmic signal recognition particle (SRP). In Eukarya and Bacteria it has been shown that membrane docking of the SRP-substrate complex occurs via the universally conserved SRP receptor (Sralpha/beta and FtsY, respectively). While much has been learned about the archaeal SRP in recent years, few studies have examined archaeal Sralpha/FtsY homologs. In the present study the FtsY homolog of Haloferax volcanii was characterized in its native host. Disruption of the sole chromosomal copy of ftsY in H. volcanii was possible only under conditions where either the full-length haloarchaeal FtsY or an amino-terminally truncated version of this protein lacking the A domain, was expressed in trans. Subcellular fractionation analysis of H. volcanii ftsY deletion strains expressing either one of the complementing proteins revealed that in addition to a cytoplasmic pool, both proteins cofractionate with the haloarchaeal cytoplasmic membrane. Moreover, membrane localization of the universally conserved SRP subunit SRP54, the key binding partner of FtsY, was detected in both H. volcanii strains. These analyses suggest that the H. volcanii FtsY homolog plays a crucial role but does not require its A domain for haloarchaeal growth.  相似文献   

7.
Weeds are a significant part of the pests limiting crop production. Currently, chemical herbicides are widely used for weed control. Environment pollution and the rise of resistant strains highlight the need for new herbicides. Nep1 is a natural bio-herbicide protein which is an effective necrosis stimulant in dicotyledonous weeds. In this study, the cDNA encoding nep1 was isolated form Fusarium oxysporum, cloned and overexpressed in Escherichia coli. The Nep1 inclusion body was purified and refolded. For biological assay, the recombinant Nep1 was applied on Sinapis arvensis, as a chemical herbicide-resistant weed, and on Nicotiana tabacum, as a model plant. Our results show a significant necrosis on the leaves of S. arvensis and N. tabacum after spraying 50 μg/ml of the recombinant protein.  相似文献   

8.
The Hsp70 molecular chaperone machine is constituted by the 70-kDa heat shock protein Hsp70 (DnaK), cochaperone protein Hsp40 (DnaJ) and a nucleotide-exchange factor GrpE. Although it is one of the best-characterized molecular chaperone machines, little is known about it in archaea. A 5.2-kb region containing the hsp70 (dnaK) gene was cloned from Natrinema sp. J7 strain and sequenced. It contained the Hsp70 chaperone machine gene locus arranged unidirectionally in the order of grpE, hsp70 and hsp40 (dnaJ). The hsp70 gene from Natrinema sp. J7 was overexpressed in Escherichia coli BL21 (DE3). The recombinant Hsp70 protein was in a soluble and active form, and its ATPase activity was optimally active in 2.0 M KCl, whereas NaCl had less effect. In vivo, the haloarchaeal hsp70 gene allowed an E. coli dnak-null mutant to propagate lambda phages and grow at 42 degrees C. The results suggested that haloarchaeal Hsp70 should be beneficial for extreme halophiles survival in low-salt environments.  相似文献   

9.
DNA ligases join the ends of DNA molecules during replication, repair and recombination. ATP-dependent ligases are found predominantly in the eukarya and archaea whereas NAD+-dependent DNA ligases are found only in the eubacteria and in entomopoxviruses. Using the genetically tractable halophile Haloferax volcanii as a model system, we describe the first genetic analysis of archaeal DNA ligase function. We show that the Hfx. volcanii ATP-dependent DNA ligase family member, LigA, is non-essential for cell viability, raising the question of how DNA strands are joined in its absence. We show that Hfx. volcanii also encodes an NAD+-dependent DNA ligase family member, LigN, the first such enzyme to be identified in the archaea, and present phylogenetic analysis indicating that the gene encoding this protein has been acquired by lateral gene transfer (LGT) from eubacteria. As with LigA, we show that LigN is also non-essential for cell viability. Simultaneous inactivation of both proteins is lethal, however, indicating that they now share an essential function. Thus the LigN protein acquired by LGT appears to have been co-opted as a back-up for LigA function, perhaps to provide additional ligase activity under conditions of high genotoxic stress.  相似文献   

10.
The alkaline protease structural gene (ALP1 gene) was isolated from both the genomic DNA and cDNA of Aureobasidium pullulans 10 by inverse PCR and RT-PCR. An open reading frame of 1248 bp encoding a 415 amino-acid protein with calculated molecular weight of 42.9 kDa was characterized. The gene contained two introns, which had 54 bp and 50 bp, respectively. The promoter of ALP1 gene was located from -62 to -112 and had two CCAAT boxes and one TATA box. The terminator of ALP1gene contained the sequence with a hairpin structure (AAAAAGTT TGGTTTTT). The protein sequence deduced from ALP1 gene exhibited 55.24%, 50.35%, and 31.68% identity with alkaline proteases from Aspergillus fumigatus, Acremonium chrysogenum, and Yarrowia lipolytica, respectively. The protein was found to have the conserved serine active site and histidine active site of serine proteases in the subtilisin family. The recombinant A. pullulans alkaline protease produced in Y. lipolytica formed clear zones on the double plates with 2% casein and alkaline protease activity in the supernatant of the recombinant Y. lipolytica culture was detected, suggesting that the cloned ALP1 gene is expressed in Y. lipolytica and the expressed alkaline protease is secreted into the medium.  相似文献   

11.
Recent in silico and in vivo studies have suggested that the majority of proteins destined for secretion in the haloarchaea are trafficked through the twin-arginine translocation (Tat) pathway. The presence of lipobox motifs in most haloarchaeal Tat signal sequences is intriguing as: (i) bioinformatic searches of archaeal genomes have not identified lipoprotein biogenesis enzymes and (ii) there are no known Tat substrates containing both a twin-arginine and a bona fide lipobox. We have examined six computationally designated Tat substrates in the haloarchaeon Haloferax volcanii to verify previous computational predictions and to initiate studies of lipoprotein biogenesis via the Tat pathway. Our results confirmed that the six candidate proteins were not only Tat substrates, but also belonged to diverse classes of secretory proteins. Analysis of predicted lipoprotein Tat substrates revealed that they are anchored to the archaeal membrane in a cysteine-dependent manner. Interestingly, despite the absence of an archaeal lipoprotein signal peptidase II (SPase II) homologue, the SPase II inhibitor globomycin impeded cell growth and specifically prevented maturation of lipoproteins. Together, this work not only represents the first experimental demonstration of a lipoprotein Tat substrate, but also indicates the presence of an unidentified lipoprotein biogenesis pathway in archaea.  相似文献   

12.
13.
A cDNA of fatty acyl-acyl carrier protein (ACP) thioesterase (Fat) from developing seed of Madhuca butyracea has been cloned. The deduced amino acid sequence of the cDNA corresponding to the mature polypeptide showed 30-40% and 60-75% identity to the reported FatA and FatB class of plant thioesterases, respectively. This gene, MbFatB, is present as a single copy in M. butyracea genome and the MbFatB protein was detected clearly in seed tissues of this plant but not in that of Indian mustard (Brassica juncea). Heterologous expression of the MbFatB gene driven by different promoters in E. coli wild type and fatty acid beta-oxidation mutant (fadD88) strains resulted production of the recombinant protein with various fusion tags either as biologically inactive (insoluble) or functionally active forms. Expression of functionally active recombinant MbFatB in E. coli affected bacterial growth and cell morphology as well as changed the fatty acid profiles of the membrane lipid and the culture supernatant. Alteration of the fatty acid composition was directed predominantly towards palmitate and to a lesser extent myristate and oleate due to acyl chain termination activity of plant thioesterase in bacteria. Thus, this new MbFatB gene isolated from a non-traditional oil-seed tree can be used in future for transgenic development of oil-seed Brassica, a widely cultivated crop that expresses predominantly oleoyl-ACP thioesterase (FatA) in its seed tissue and has high amount of unwanted erucic acid in edible oil in order to alter the fatty acid profile in a desirable way.  相似文献   

14.
15.
The green Cu-NirK from Haloferax mediterranei (Cu-NirK) has been expressed, refolded and retrieved as a trimeric enzyme using an expression method developed for halophilic Archaea. This method utilizes Haloferax volcanii as a halophilic host and an expression vector with a constitutive and strong promoter. The enzymatic activity of recombinant Cu-NirK was detected in both cellular fractions (cytoplasmic fraction and membranes) and in the culture media. The characterization of the enzyme isolated from the cytoplasmic fraction as well as the culture media revealed important differences in the primary structure of both forms indicating that Hfx. mediterranei could carry out a maturation and exportation process within the cell before the protein is exported to the S-layer. Several conserved signals found in Cu-NirK from Hfx. mediterranei sequence indicate that these processes are closely related to the Tat system. Furthermore, the N-terminal sequence of the two Cu-NirK subunits constituting different isoforms revealed that translation of this protein could begin at two different points, identifying two possible start codons. The hypothesis proposed in this work for halophilic Cu-NirK processing and exportation via the Tat system represents the first approximation of this mechanism in the Halobacteriaceae family and in Prokarya in general.  相似文献   

16.
During the mating of yeast Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. This process requires the functions of BiP/Kar2p, a member of the Hsp70 family in the endoplasmic reticulum, and its partner protein, Jem1p. To investigate further the role of BiP and Jem1p in nuclear fusion, we screened for partner proteins for Jem1p by the yeast two-hybrid system and identified Nep98p. Nep98p is an essential integral membrane protein of the nuclear envelope and is enriched in the spindle pole body (SPB), the sole microtubule-organizing center in yeast. Temperature-sensitive nep98 mutant cells contain abnormal SPBs lacking the half-bridge, suggesting the essential role of Nep98p in the organization of the normal SPB. Additionally, nep98 mutant cells show defects in mitotic nuclear division and nuclear fusion during mating. Because Jem1p is not required for nuclear division, Nep98p probably has dual functions in Jem1p-dependent karyogamy and in Jem1p-independent nuclear division.  相似文献   

17.
本研究采用PCR方法从人类免疫缺陷病毒1型(Human immunodeficiency virus 1,HIV-1)HXB2株tat基因中扩增编码Tat蛋白N末端1-21位氨基酸缺失的突变体Tat22-101基因片段,构建其原核表达质粒pET32a-Tat22-101,经双酶切及测序验证后,转化大肠埃希菌BL21(DE3),进行IPTG诱导表达及Ni2+-NTA柱亲和层析纯化。纯化后的突变体融合蛋白PET32a-Tat22-101经SDS-PAGE及Western blotting鉴定,其相对分子质量约为26.9kD。该融合蛋白免疫BALB/c小鼠,经ELISA检测结果表明,pET32a-Tat22-101融合蛋白不仅较好地保留其免疫原性,而且能诱导产生高滴度的针对Tat N末端区之外的Tat其他功能区表位的抗体,为进一步研究Tat生物学功能和研制新型HIV Tat疫苗奠定试验基础。  相似文献   

18.
Techniques for the transformation of halophilic archaebacteria have been developed recently and hold much promise for the characterization of these organisms at the molecular level. In order to understand genome organization and gene regulation in halobacteria, we have begun the characterization of genes involved in amino acid biosynthesis in Halobacterium (Haloferax) volcanii. These studies are facilitated by the many auxotrophic mutants of H. volcanii that have been isolated. In this project we demonstrate that cosmid DNA prepared from Escherichia coli can be used to transform an H. volcanii histidine auxotroph to prototrophy. A set of cosmid clones covering most of the genome of H. volcanii was used to isolate the gene which is defective in H. volcanii WR256. Subcloning identified a 1.6-kilobase region responsible for transformation. DNA sequence analysis of this region revealed an open reading frame encoding a putative protein 361 amino acids in length. A search of the DNA and protein data bases revealed that this open reading frame encodes histidinol-phosphate aminotransferase (EC 2.6.1.9), the sequence of which is also known for E. coli, Bacillus subtilis, and Saccharomyces cerevisiae.  相似文献   

19.
用PCR方法从地衣芽孢杆菌6816中扩增了碱性蛋白酶基因(apr),扩增的1.14kb的DNA片段插入到大肠杆菌载体pET-20b中,构建成重组分泌型表达载体pAPR1。pAPR1中碱性蛋白酶基因在大肠杆菌宿主JM109(DE3)中得到表达,SDS-PAGE分析显示融合表达产物的分子量为30kD,同核酸序列测定所推导的值相符,表达产物占细胞总蛋白的7.5%,重组菌的酶活比出发菌株提高了3.3倍,研究发现,重组的碱性蛋白酶在进入大肠杆菌周质空间时存在前肽自动脱落的现象。  相似文献   

20.
Bacteriophage T7 RNA polymerase is stable in Escherichia coli but very susceptible to cleavage by at least one endoprotease after cell lysis. The major source of this endoprotease activity was found to be localized to the outer membrane of the cell. A rapid whole-cell assay was developed to screen different strains for the presence of this proteolytic activity. Using this assay, we identified some common laboratory strains that totally lack the protease. Genetic and Southern analyses of these null strains allowed us to conclude that the protease that cleaves T7 RNA polymerase is OmpT (formerly termed protein a), a known outer membrane endoprotease, and that the null phenotype results from deletion of the OmpT structural gene. A recombinant plasmid carrying the ompT gene enables these deletion strains to synthesize OmpT and converts them to a protease-positive phenotype. The plasmid led to overproduction of OmpT protein and protease activity in the E. coli K-12 and B strains we used, but only weak expression in the E. coli C strain, C1757. This strain-dependent difference in ompT expression was investigated with respect to the known influence of envZ on OmpT synthesis. A small deletion in the ompT region of the plasmid greatly diminishes the amount of OmpT protein and plasmid-encoded protease present in outer membranes. Use of ompT deletion strains for production of T7 RNA polymerase from the cloned gene has made purification of intact T7 RNA polymerase routine. Such strains may be useful for purification of other proteins expressed in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号