共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Spinal cord ischemia evoked a biphasic increase in CSF-Glu during 20 min of ischemia (40%) and at 2 hr after reperfusion (70%) in the nontreated group that was attenuated by all treated groups. But MK-801(15 g i.t.) did not affect the increased Glu at 2 hr (80%).2. The argyrophilia observed in laminae II–V at 8 hr after reperfusion was attenuated by hypothermia (33°C) and combination with MK-801, but the attenuation was less with MK-801.3. Mild hypothermia attenuated the biphasic increase in CSF-Glu and corresponding development of neuronal damage after spinal cord ischemia.4. Mild hypothermia with NMDA antagonism did not yield any further effects, suggesting that hypothermia itself plays a pivotal role in the protection. 相似文献
2.
Darko Perovic Marija Milavic Stjepan Dokuzovic Ivan Krezic Slaven Gojkovic Hrvoje Vranes Igor Bebek Vide Bilic Nenad Somun Ivan Brizic Ivan Skorak Klaudija Hriberski Suncana Sikiric Eva Lovric Sanja Strbe Milovan Kubat Alenka Boban Blagaic Anita Skrtic Sven Seiwerth Predrag Sikiric 《Current issues in molecular biology》2022,44(5):1901
Recently, marked therapeutic effects pertaining to the recovery of injured rat spinal cords (1 min compression injury of the sacrocaudal spinal cord (S2-Co1) resulting in tail paralysis) appeared after a single intraperitoneal administration of the stable gastric pentadecapeptide BPC 157 at 10 min post-injury. Besides the demonstrated rapid and sustained recovery (1 year), we showed the particular points of the immediate effect of the BPC 157 therapy that began rapidly after its administration, (i) soon after injury (10 min), or (ii) later (4 days), in the rats with a definitive spinal cord injury. Specifically, in counteracting spinal cord hematoma and swelling, (i) in rats that had undergone acute spinal cord injury, followed by intraperitoneal BPC 157 application at 10 min, we focused on the first 10–30 min post-injury period (assessment of gross, microscopic, and gene expression changes). Taking day 4 post-injury as the definitive injury, (ii) we focused on the immediate effects after the BPC 157 intragastric application over 20 min of the post-therapy period. Comparable long-time recovery was noted in treated rats which had definitive tail paralysis: (iii) the therapy was continuously given per orally in drinking water, beginning at day 4 after injury and lasting one month after injury. BPC 157 rats presented only discrete edema and minimal hemorrhage and increased Nos1, Nos2, and Nos3 values (30 min post-injury, (i)) or only mild hemorrhage, and only discrete vacuolation of tissue (day 4, (ii)). In the day 4–30 post-injury study (iii), BPC 157 rats rapidly presented tail function recovery, and no demyelination process (Luxol fast blue staining). 相似文献
3.
4.
Woerly S Awosika O Zhao P Agbo C Gomez-Pinilla F de Vellis J Espinosa-Jeffrey A 《Neurochemical research》2005,30(6-7):721-735
We recently showed a successful reconstruction of the cat spinal cord using NeuroGelTM a polymer hydrogel bridge between the two spinal stumps. The polymer graft supports axonal elongation, myelination and angiogenesis
up to 21 months, Wallerian degeneration was diminished and gliotic scarring was prevented. In the present study, we report
the expression patterns of two stress proteins, (HSPs) HSP-25 and HSP-32 after spinal cord hemisection with and without reparative
surgery with NeuroGelTM. Double immunofluorescence using cell specific markers for neurons, astrocytes and oligodendrocytes (OL), in combination
with antibodies for HSP-25 and 32 showed that mainly neurons express both proteins. Both HSPs displayed different temporal
expression patterns in the reconstructed spinal cords with a concomitant reduction of secondary damage. In conclusion, Neurogel
reconstruction of the spine during the acute phase considerably reduces secondary damage resulting in a rapid and stable regenerative
response. 相似文献
5.
Basic and Regulatory Mechanisms of In Vitro Release of Met-Enkephalin from the Dorsal Zone of the Rat Spinal Cord 总被引:3,自引:3,他引:3
Abstract: Under control conditions, superfused slices of the dorsal half of the lumbar enlargement from adult rats released Met-enkephalin-like material (MELM) that behaved as authentic Met-enkephalin under two different chromatographic procedures (Bio-gel filtration, HPLC). MELM release increased markedly on exposure of slices to batrachotoxin (0.5 μ M ) or to an excess of K+ (28 and 56 m M instead of 5.6 m M ). The K + -evoked release was totally dependent on the presence of Ca2+ in the super-fusing fluid whereas the spontaneous efflux of MELM was only partially Ca2+ -dependent. Further experiments performed with tissues of polyarthritic rats indicated that the increase in their MELM levels was associated with a lower fractional rate constant of MELM release, therefore suggesting that spinal Met-enkephalin turnover might be reduced in chronically suffering animals. Examination of the possible modulation of MELM release by various neuroactive compounds present within the dorsal horn revealed that cholecystokinin (10 μ M ), but not its desulphated derivative, substance P-sulphoxide (10 μ M ), and to a lesser extent substance P, enhanced the K+ -evoked MELM release. In contrast, γ-aminobutyric acid (10 μ M ) and (–)-baclofen (1 μ M ) partially prevented the stimulatory effect of K+ on MELM release. Other compounds such as serotonin, somatostatin, and neurotensin altered neither the spontaneous nor the K+ -evoked release of MELM. 相似文献
6.
Nyitrai G Kékesi KA Szilágyi N Papp A Juhász G Kardos J 《Neurochemical research》2002,27(1-2):139-145
In the present study, we compared in vivo changes of extracellular amino acid levels and nucleotide derivatives to a single ip dose of lindane (10-60 mg/kg) and picrotoxin (5 mg/kg) in the hippocampus of halothane anaesthetized rat by microdialysis-coupled HPLC analysis. Brain activity was monitored by EEG. The effects of lindane and picrotoxin on EEG pattern of rats as well as on hippocampal amino acid and nucleotide status were studied in 0-50 min, 50-100 min and 100-150 min periods post-dosing. Significant decreases in Glu and Asp were found after picrotoxin treatment. After 50-100 min post-dosing, hippocampal hypoxanthine and inosine levels increased to both lindane (10 mg/kg) and picrotoxin whereas xanthine and uridine levels increased to picrotoxin, only. Lindane elicited a dose-dependent occurrence of negative spikes accompanied with rhythmic activity at 4-5 Hz. The picrotoxin-induced 4-5 Hz activity did not display negative sharp waves and was accompanied by 10 Hz oscillations. 相似文献
7.
beta-N-Oxalylamino-L-alanine (BOAA) is a dicarboxylic diamino acid present in Lathyrus sativus (chickling pea). Excessive oral intake of this legume in remote areas of the world causes humans and animals to develop a type of spastic paraparesis known as lathyrism. BOAA is one of several neuroactive glutamate analogs reported to stimulate excitatory receptors and, in high concentrations, cause neuronal vacuolation and necrosis. The present study investigates the action of BOAA in vitro on CNS high-affinity transport systems for glutamate, gamma-aminobutyric acid (GABA), aspartate, glycine, and choline and in the activity of glutamate decarboxylase (GAD), the rate-limiting enzyme in the decarboxylation of glutamate to GABA. Crude synaptosomal fractions (P2) from rat brain and spinal cord were used for all studies. [3H]Aspartate transport in brain and spinal cord synaptosomes was reduced as a function of BOAA concentration, with reductions to 40 and 30% of control values, respectively, after 15-min preincubation with 1 mM BOAA. Under similar conditions, transport of [3H]glutamate was reduced to 74% (brain) and 60% (spinal cord) of control values. High-affinity transport of [3H]GABA, [3H]glycine, and [3H]choline, and the enzyme activity of GAD, were unaffected by 1 mM BOAA. While these data are consistent with the excitotoxic (convulsant) activity of BOAA, their relationship to the pathogenesis of lathyrism is unknown. 相似文献
8.
Free Radicals in Rabbit Spinal Cord Ischemia: Electron Spin Resonance Spectroscopy and Correlation with SOD Activity 总被引:2,自引:0,他引:2
Vincenzo Lombardi Ladislav Valko Svorad Štolc Marián Valko Ol'ga Ondrejičková L'ubica Horáková Jan Plaček Antonio Troncone 《Cellular and molecular neurobiology》1998,18(4):399-412
1. In nonanesthetized rabbits temporal occlusion of the abdominal aorta was used to induce oxidative stress in the lower part of the body including distal segments of the spinal cord.2. Spinal cord samples were taken from the animals exposed to 25-min aortic occlusion (AO ) or to occlusion followed by 1- or 2-hr reperfusion (AO/R1 or AO/R2, respectively) or from sham-operated animals (C). The presence of free radicals (FR) in the spinal cord samples frozen in liquid N2 was assessed by ESR spectroscopy without spin trapping. Moreover, superoxide dismutase (SOD) activity and conjugated diene (CD) levels were measured in the samples.3. In the AO group FR were detected in the spinal cord regions close to the occlusion (lower thoracic and distal segments) along with a decrease in SOD activity. The calculated g value (g = 2.0291) indicated that the paramagnetic signal recorded might be attributed to superoxide radicals. FR were absent in the AO/R1 group. Concurrently, the SOD activity revealed a significant tendency to return to the control level. FR appeared again in the AO/R2 group, mostly in the upper and middle lumbar regions, along with a decrease in SOD activity. No sample from the C group revealed FR. A significant increase in CD levels was observed in the thoracolumbar region only in the AO/R2 group. The temporary absence of FR in the AO/R1 group suggests activation of defense antioxidant mechanisms (e.g., specific enzymatic systems such as SOD), which might have been exhausted later.4. Changes in SOD activity similar to those observed in the thoracolumbar region, though less noticeable, occurred in the obviously noncompromised tissue (upper cervical region). This points to a kind of generalized reponse of the animal to aortic occlusion.5. Direct ESR spectroscopy revealed the presence of FR as well as their time course in the spinal cord during the early phase of ischemia/reperfusion injury and the inverse relationship between FR and SOD activity. 相似文献
9.
Abstract: The effects of derivatives of dopamine-derived isoquinoline, ( R )-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [or ( R )-salsolinol] on hydroxyl radical production were studied in vivo and in vitro. As reported previously, ( R )-salsolinol is N -methylated in the brain into N -methyl-( R )-salsolinol, which is further oxidized into the 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion. Using in vivo microdialysis, we measured hydroxyl radical levels in the rat striatum by HPLC after derivatization to 2,3-dihydroxybenzoic acid with salicylic acid. ( R )-Salsolinol and the isoquinolinium ion (40 and 200 µ M ) and N -methyl-( R )-salsolinol (200 µ M ) reduced in vivo radical formation, with reduction of dopamine catabolism. ( R )-Salsolinol and the isoquinolinium ion reduced in vitro hydroxyl radical production from dopamine autoxidation. On the other hand, 40 µ M N -methyl-( R )-salsolinol increased the hydroxyl radical level in the striatum, and the radical production by its autoxidation was confirmed in vitro. N -Methyl-( R )-salsolinol affected neither in vivo dopamine catabolism nor in vitro production of hydroxyl radicals from dopamine. These results show that ( R )-salsolinol and N -methyl-( R )-salsolinol may be neuroprotective and neurotoxic, respectively, and thus might be involved in the pathogenesis of Parkinson's disease. 相似文献
10.
N-methyl-D-aspartate (NMDA) stimulated release of [3H]noradrenaline (NA) from prelabelled rat spinal cord slices. The release was partially insensitive to tetrodotoxin (TTX) and was inhibited by the NMDA antagonist MK-801. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) also evoked release of [3H]NA, which was enhanced by blocking AMPA receptor desensitization with cyclothiazide. AMPA-evoked release was inhibited by the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX) but was not affected by TTX. NMDA and AMPA showed synergistic effects, indicating co-existence of NMDA and AMPA receptors on noradrenergic terminals. Kainate evoked [3H]NA release only at high concentrations and the release was not potentiated by blocking kainate receptor desensitization with concanavalin A. Thus, the results indicate that there are stimulatory presynaptic NMDA and AMPA receptors on noradrenergic axon terminals in the spinal cord and that they interact synergistically to evoke release of [3H]NA. 相似文献
11.
Ovarian hormones influence the physiology of the spinal cord through incompletely understood cellular mechanisms. To date, there has been little compelling evidence for progesterone receptors in spinal cord neurons. Using two antibodies specific for progesterone receptors in an immunohistochemical investigation, we now report the presence of estrogen-inducible progesterone receptors in the spinal cord. Estrogen-inducible progesterone receptors were observed in the neurons of lamina X and the interomedialateral cell column, which are also known to express estrogen receptors. Estrogen-inducible progesterone receptors similar to those observed in females were also apparent in lamina X and interomediolateral cell column neurons in the spinal cords of males treated with estradiol. Furthermore, the density of progesterone receptors in lamina X was observed to fluctuate across the estrous cycle in female rats, with the highest progesterone receptor expression levels occurring late in proestrus, following the estradiol surge and coincident with high circulating progesterone levels. The lowest progesterone receptor expression levels were observed late in estrus following the progesterone surge. Together, these results demonstrate that estrogen-sensitive progestin targets exist in the spinal cord, and their possible role in the nervous control of reproduction and ovarian steroid modulation of nociception is discussed. 相似文献
12.
Mária Kolesárová Jaroslav Pavel Nadežda Lukáčová Dalibor Kolesár Jozef Maršala 《Cellular and molecular neurobiology》2006,26(7-8):1279-1292
1. This study was performed to compare both the Ca2+-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro.2. Catalytic nitric oxide synthase activity was determined by the conversion of L-[14C]arginine to L-[14C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody.3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation.4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca2+-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations.
Abbreviations: ACSF, artificial cerebrospinal fluid; ATP, adenosine triphosphate; DAB, diaminobenzidine-tetrahydrochloride; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; eNOS, endothelial nitric oxide synthase; FAD, flavin adenine dinucleotide; H4B, tetrahydrobiopterin; iNOS, inducible nitric oxide synthase; NADPH, nicotinamide adenine dinucleotide phosphate; NMDA, N-methyl-D-aspartate; NO, nitric oxide; NOS, nitric oxide synthase; nNOS, neuronal nitric oxide synthase; NOS-IR, nitric oxide synthase immunoreactivity; PBS, phosphate-buffered saline; PTFE, polytetrafluoroethylene 相似文献
13.
The intracerebral microdialysis technique, coupled with a sensitive radioenzymatic assay, was employed to study histamine release in the striatum and in the bed nucleus of the stria terminalis (BNST) in conscious, freely moving rats. In these brain regions, extracellular histamine concentrations decreased by 20% when calcium was omitted from the perfusion solution. Extracellular histamine was insensitive to the addition of tetrodotoxin to the perfusion medium. In striatum, extracellular histamine concentrations declined in an apparent biexponential manner after the administration of alpha-fluoromethylhistidine, an inhibitor of histamine synthesis. The half-lives for the disappearance of histamine were 32 min and 7.7 h, indicating the presence of at least two histamine pools. Histidine loading resulted in a nearly twofold increase in histamine outflow in striatum. In the BNST, yohimbine increased the extracellular histamine content by 50%, suggesting that histamine release is subject to alpha 2-adrenergic regulation in vivo. The extent to which histamine detected in cerebral microdialysis samples is of neurogenic origin remains to be established. 相似文献
14.
Kurt A. Krobert Richard L. Sutton†‡ Dennis M. Feeney§ 《Journal of neurochemistry》1994,62(6):2233-2240
Abstract: Microdialysis sampling combined with HPLC was used to assess spontaneous and d -amphetamine (AMPH)-evoked release of noradrenaline (NA) in the cerebellum 1 day after probe implantation and 1 day after contusion of the right sensorimotor cortex (SMCX) in rats. In normal controls the mean β SEM basal NA release was 10.08 β 0.97 pg in the left cerebellar hemisphere and 8.21 β 1.17 pg in the right hemisphere 22–24 h after probe implantation. The average β SEM NA release in a 3-h period after administration of AMPH (2 mg/kg, i.p.) increased to 453 β 47.35 pg in the left and to 402 β 49.95 pg in the right cerebellar hemisphere. NA release (range of 413–951% increase over baseline) was maximal 20–40 min postdrug, returned to basal levels within 5 h, and remained unchanged for the 22–24-h postdrug measurement period. Animals with a focal SMCX contusion had a marked depression of both spontaneous and AMPH-evoked NA release. Mean β SEM basal NA release was 4.84 β 1.09 pg in the left and 4.95 β 0.43 pg in the right cerebellar hemisphere from 22 to 24 h postinjury, with NA levels increasing to 259 β 75.44 and 219 β 23.45 pg in the respective hemispheres over a 3-h period after AMPH. The maximal AMPH-induced increase in NA release ranged from 522 to 1,088% of basal levels in contused rats, with NA release returning to predrug levels within 5 h and remaining depressed for at least 48 h postinjury. These data indicate that although neocortical injury results in a bilateral reduction of extracellular levels of NA in cerebellum, AMPH-releasable NA stores are present in the cerebellum. These effects may be related to locomotor impairments and AMPH-facilitated behavioral" recovery after cortical injury. 相似文献
15.
Lucia Slovinska Denisa Harvanova Jana Janockova Jana Matejova Peter Cibur Marko Moravek Timea Spakova Jan Rosocha 《Current issues in molecular biology》2022,44(2):578
At present, there is no effective way to treat the consequences of spinal cord injury (SCI). SCI leads to the death of neural and glial cells and widespread neuroinflammation with persisting for several weeks after the injury. Mesenchymal stem cells (MSCs) therapy is one of the most promising approaches in the treatment of this injury. The aim of this study was to characterize the expression profile of multiple cytokines, chemokines, growth factors, and so-called neuromarkers in the serum of an SCI patient treated with autologous bone marrow-derived MSCs (BM-MSCs). SCI resulted in a significant increase in the levels of neuromarkers and proteins involved in the inflammatory process. BM-MSCs administration resulted in significant changes in the levels of neuromarkers (S100, GFAP, and pNF-H) as well as changes in the expression of proteins and growth factors involved in the inflammatory response following SCI in the serum of a patient with traumatic SCI. Our preliminary results encouraged that BM-MSCs with their neuroprotective and immunomodulatory effects could affect the repair process after injury. 相似文献
16.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1). 相似文献
17.
Abstract: The effects of local perfusion with the glutamate receptor agonist NMDA and the noncompetitive NMDA receptor antagonist dizolcipine (MK-801) on extracellular dopamine (DA), GABA, and glutamate (Glu) levels in the dorsolateral striatum were monitored using in vivo microdialysis in the halothane-anesthetized rat. In addition, the sensitivity of both the basal and NMDA-induced increases in levels of these neurotransmitter substances to perfusion with tetrodotoxin (TTX; 10?5 M) and a low Ca2+ concentration (0.1 mM) was studied. The results show that the local perfusion (10 min) with both the 10?3 and 10?4 M dose of NMDA increased striatal DA and GABA outflow, whereas only the (10?3 M) dose of NMDA was associated with a small and delayed increase in extracellular Glu levels. The NMDA-induced effects were dose-dependently counteracted by simultaneous perfusion with MK-801 (10?6 and 10?5 M). Both the basal and NMDA (10?3 M)-induced increase in extracellular striatal DA content was reduced in the presence of TTX and a low Ca2+ concentration, whereas both basal and NMDA-stimulated GABA levels were unaffected by these treatments. Both the basal and NMDA-stimulated Glu levels were enhanced following TTX treatment, whereas perfusion with a low Ca2+ concentration reduced basal Glu levels and enhanced and prolonged the NMDA-induced stimulation. These data support the view that NMDA receptor stimulation plays a role in the regulation of extracellular DA, GABA, and Glu levels in the dorsolateral neostriatum and provide evidence for a differential effect of NMDA receptor stimulation on these three striatal neurotransmitter systems, possibly reflecting direct and indirect actions mediated via striatal NMDA receptors. 相似文献
18.
Laura Lambás-Señas Jean-Yves Gillon Jean-Pierre Bouilloux Michèle Seccia Michel Buda Bernard Renaud 《Journal of neurochemistry》1990,54(6):2042-2049
In vivo voltammetry or microdialysis was used to monitor catecholaminergic metabolism in the C1 region of the ventrolateral medulla oblongata of anesthetized rats. In vivo voltammetry allowed the recording of a catechol oxidation current (CA.OC) peak in this region. This CA.OC was suppressed after inhibition of monoamine oxidase by pargyline or after inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine and was markedly increased after blockade of dopamine-beta-hydroxylase by FLA 63. Similar results were found when intracerebral microdialysis coupled with HPLC and electrochemical detection was used to measure the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysates obtained from the C1 region: The changes in CA.OC and DOPAC concentration in the dialysates exhibited very similar kinetic characteristics in the three pharmacological experiments. These results support the involvement of DOPAC as a major component of the electrochemical signal recorded by voltammetry in the C1 group of adrenergic neurons. 相似文献
19.
Steven P. Butcher Jerczy W. Lazarewicz ers Hamberger 《Journal of neurochemistry》1987,49(5):1355-1360
The in vivo effects of kainate (1 mM) on fluxes of 45Ca2+, and endogenous amino acids, were examined in the rat striatum using the brain microdialysis technique. Kainate evoked a rapid decrease in dialysate 45Ca2+, and an increase in the concentration of amino acids in dialysates in Ca2+-free dialysates. Taurine was elevated six- to 10-fold, glutamate two- to threefold, and aspartate 1.5- to twofold. There was also a delayed increase in phosphoethanolamine, whereas nonneuroactive amino acids were increased only slightly. The kainic acid-evoked reduction in dialysate 45Ca2+ activity was attenuated in striata lesioned previously with kainate, suggesting the involvement of intrinsic striatal neurons in this response. The increase in taurine concentration induced by kainate was slightly smaller under these conditions. Decortication did not affect the kainate-evoked alterations in either dialysate 45Ca2+ or amino acids. These data suggest that kainate does not release acidic amino acids from their transmitter pools located in corticostriatal terminals. 相似文献
20.
Jean Antoine Girault Luis Barbeito Umberto Spampinato Henri Gozlan Jacques Glowinski Marie-Jo Besson 《Journal of neurochemistry》1986,47(1):98-106
By means of the push-pull cannula method, the outflow of endogenous amino acids was studied in the striatum of halothane-anesthetized rats. Addition of K+ ions (30 mM for 4 min) to the superfusion fluid increased the release of aspartate (+116%), glutamate (+217%), taurine (+109%), and gamma-aminobutyric acid (GABA) (+429%) whereas a prolonged decrease in the outflow of glutamine (-28%) and a delayed reduction in the efflux of tyrosine (-25%) were observed. In the absence of Ca2+, the K+-induced release of aspartate, glutamate, and GABA was blocked whereas the K+-induced release of taurine was still present. Under these conditions, the decrease in glutamine efflux was reduced and that of tyrosine was abolished. Local application of tetrodotoxin (5 microM) decreased only the outflow of glutamate (-25%). One week following lesion of the ipsilateral sensorimotor cortex the spontaneous outflow of glutamine and of tyrosine was enhanced. Despite the lack of change in their spontaneous outflow, the K+-evoked release of aspartate and glutamate was less pronounced in lesioned than in control animals, whereas the K+-evoked changes in GABA and glutamine efflux were not modified. Our data indicate that the push-pull cannula method is a reliable approach for the study of the in vivo release of endogenous amino acids. In addition, they provide further evidence for a role for glutamate and aspartate as neurotransmitters of corticostriatal neurons. 相似文献