首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Human placental lactogen B (hCS-B) promoter activity is strongly stimulated by triiodothyronine (T3) in pituitary GC cells through interaction between the thyroid receptor and a thyroid receptor-binding element (TBE) spanning coordinates -67 to -41. This TBE is adjacent to the binding site for pituitary factor GHF1 (-95 to -68) which seems necessary for T3 stimulation of hCS-B promoter activity (M. L. Voz, B. Peers, A. Belayew, and J. A. Martial, J. Biol. Chem. 266:13397-13404, 1991). We here demonstrate actual synergy between the thyroid receptor and GHF1. Indeed, in placental JEG-3 cells devoid of factor GHF1, hCS promoter activity is barely stimulated by T3, while a strong response is observed in pituitary GC cells. In the latter, furthermore, neither the TBE nor the GHF1-binding site alone is sufficient to render the thymidine kinase promoter responsive to T3, while in combination they promote strong T3 stimulation. Close proximity between these sites is required for optimal synergy: T3 stimulation globally decreases with increased spacing. Furthermore, synergy occurs not only with a GHF1-binding site but also with all other factor recognition sequences tested (Sp1, NF1, CP1, Oct1, and CACCC boxes) and even with two other copies of the TBE. Nor is it specific to hCS TBE, since the palindromic sequence TCAGGTCA TGACCTGA (TREpal) also exhibits cooperativity.  相似文献   

9.
10.
Arabidopsis thaliana vacuolar H(+)-translocating pyrophosphatase (V-PPase) was expressed functionally in yeast vacuoles with endogenous vacuolar H(+)-ATPase (V-ATPase), and the regulation and reversibility of V-ATPase were studied using these vacuoles. Analysis of electrochemical proton gradient (DeltamuH) formation with ATP and pyrophosphate indicated that the proton transport by V-ATPase or V-PPase is not regulated strictly by the proton chemical gradient (DeltapH). On the other hand, vacuolar membranes may have a regulatory mechanism for maintaining a constant membrane potential (DeltaPsi). Chimeric vacuolar membranes showed ATP synthesis coupled with DeltamuH established by V-PPase. The ATP synthesis was sensitive to bafilomycin A(1) and exhibited two apparent K(m) values for ADP. These results indicate that V-ATPase is a reversible enzyme. The ATP synthesis was not observed in the presence of nigericin, which dissipates DeltapH but not DeltaPsi, suggesting that DeltapH is essential for ATP synthesis.  相似文献   

11.
Rotation catalysis theory has been successfully applied to the molecular mechanism of the ATP synthase (F(0)F(1)-ATPase) and probably of the vacuolar ATPase. We investigated the ion binding step to Enterococcus hirae Na(+)-translocating V-ATPase. The kinetics of Na(+) binding to purified V-ATPase suggested 6 +/- 1 Na(+) bound/enzyme molecule, with a single high affinity (K(d(Na(+()))) = 15 +/- 5 micrometer). The number of cation binding sites is consistent with the model that V-ATPase proteolipids form a rotor ring consisting of hexamers, each having one cation binding site. Release of the bound (22)Na(+) from purified molecules in a chasing experiment showed two phases: a fast component (about two-thirds of the total amount of bound Na(+); k(exchange) > 1.7 min(-1)) and a slow component (about one-third of the total; k(exchange) = 0.16 min(-1)), which changes to the fast component by adding ATP or ATPgammaS. This suggested that about two-thirds of the Na(+) binding sites of the Na(+)-ATPase are readily accessible from the aqueous phase and that the slow component is important for the transport reaction.  相似文献   

12.
13.
14.
15.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

16.
17.
Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号