首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microscopy of organic-rich, sulfidic sediment samples of marine and freshwater origin revealed filamentous, multicellular microorganisms with gliding motility. Many of these neither contained sulfur droplets such as the Beggiatoa species nor exhibited the autofluorescence of the chlorophyll-containing cyanobacteria. A frequently observed morphological type of filamentous microorganism was enriched under anoxic conditions in the dark with isobutyrate plus sulfate. Two strains of filamentous, gliding sulfate-reducing bacteria, Tokyo 01 and Jade 02, were isolated in pure cultures. Both isolates oxidized acetate and other aliphatic acids. Enzyme assays indicated that the terminal oxidation occurs via the anaerobic C1 pathway (carbon monoxide dehydrogenase pathway). The 16S rRNA genes of the new isolates and of the two formerly described filamentous species of sulfate-reducing bacteria, Desulfonema limicola and Desulfonema magnum, were analyzed. All four strains were closely related to each other and affiliated with the δ-subclass of Proteobacteria. Another close relative was the unicellular Desulfococcus multivorans. Based on phylogenetic relationships and physiological properties, Strains Tokyo 01 and Jade 02 are assigned to a new species, Desulfonema ishimotoi. A new, fluorescently labeled oligonucleotide probe targeted against 16S rRNA was designed so that that it hybridized specifically with whole cells of Desulfonema species. Filamentous bacteria that hybridized with the same probe were detected in sediment samples and in association with the filamentous sulfur-oxidizing bacterium Thioploca in its natural habitat. We conclude that Desulfonema species constitute an ecologically significant fraction of the sulfate-reducing bacteria in organic-rich sediments and microbial mats. Received: 30 December 1998 / Accepted: 19 July 1999  相似文献   

2.
Phosphogypsum (CaSO4), a primary by-product of phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. It poses a severe threat to the quality of water and land in countries producing phosphoric acid. In this study, the potential of sulfate-reducing bacteria for biodegradation of this sulfur-rich industrial solid waste was assessed. The effect of phosphogypsum concentration, carbon and nitrogen sources, temperature, pH and stirring on the growth of sulfate-reducing bacteria was investigated. Growth of sulfate-reducing bacteria was monitored by measuring sulfide production. Phosphogypsum was shown to be a good source of sulfate, albeit that the addition of organic carbon was necessary for bacterial growth. Biogenic sulfide production occurred with phosphogypsum up to a concentration of 40 g L−1, above which no growth of sulfate-reducing bacteria was observed. Optimal growth was obtained at 10 g L−1 phosphogypsum. Both the gas mixture H2/CO2 and lactate supported high amounts of H2S formation (19 and 11 mM, respectively). The best source of nitrogen for sulfate-reducing bacteria was yeast extract, followed by ammonium chloride. The presence of nitrate had an inhibitory effect on the process of sulfate reduction. Stirring the culture at 150 rpm slightly stimulated H2S formation, probably by improving sulfate solubility.  相似文献   

3.
The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. The population structure, determined by denaturing gradient gel electrophoresis and by the use of oligonucleotide probes, was linked to the functional changes in the reactors. At the influent lactate to sulfate molar ratio of 0.35 mol mol−1, i.e., electron donor limitation, lactate oxidation was mainly carried out by incompletely oxidizing sulfate-reducing bacteria, which formed 80–85% of the total bacterial population. Desulfomicrobium- and Desulfovibrio-like species were the most abundant sulfate-reducing bacteria. Acetogens and methanogenic Archaea were mostly outcompeted, although less than 2% of an acetogenic population could still be observed at this limiting concentration of lactate. In the near absence of sulfate (i.e., at very high lactate/sulfate ratio), acetogens and methanogenic Archaea were the dominant microbial communities. Acetogenic bacteria represented by Dendrosporobacter quercicolus-like species formed more than 70% of the population, while methanogenic bacteria related to uncultured Archaea comprising about 10–15% of the microbial community. At an influent lactate to sulfate molar ratio of 2 mol mol−1, i.e., under sulfate-limiting conditions, a different metabolic route was followed by the mixed anaerobic community. Apparently, lactate was fermented to acetate and propionate, while the majority of sulfidogenesis and methanogenesis were dependent on these fermentation products. This was consistent with the presence of significant levels (40–45% of total bacteria) of D. quercicolus-like heteroacetogens and a corresponding increase of propionate-oxidizing Desulfobulbus-like sulfate-reducing bacteria (20% of the total bacteria). Methanogenic Archaea accounted for 10% of the total microbial community.  相似文献   

4.
In addition to three new isolates, six strains of representative species of sulfate-reducing bacteria were tested for their capacity to use elemental sulfur as an electron acceptor for growth. There was good growth and sulfide production by strain Norway 4 and the three isolates, two of which had been enriched with sulfur flower and one isolated from a culture with green sulfur bacteria. Slow but definite growth was observed with Desuflovibrio gigas. The type strains of Desulfovibrio desulfuricans, D. vulgaris, and Desulfotomaculum nigrificans as well as Desulfomonas pigra did not grow with sulfur. The four strains that grew well with sulfur flower were straight, nonsporulating rods and did not contain desulfoviridin.  相似文献   

5.
Abstract Microhabitats and survival of sulfate-reducing bacteria (SRB) in an oxic surface sediment of a seawater lake were examined. The size of fractionation of the sediment suspension showed that most of SRB were associated with sediment particles larger than 10 μm. The D values (time in h required to destroy 90% of the initial viable population) for SRB in the whole sediment suspension and for SRB i n the < μ m and the < 5 μ m fractions were, respectively, 23.7, 10 and 4 when the SRB were exposed to air. Survival of the FeS-associated Desulfovibrio desulfuricans ( D value, 9.3) was higher than that of the free-living ones ( D value, 1.8). These results show that particle-associated SRB are more protected against oxygen than free-living ones in oxic sediments.  相似文献   

6.
目的 建立分析肠道内硫酸盐还原菌(Sulfate-reducing bacteria,SRB)组成的变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)技术,并用于分析10例健康人粪便样品中的SRB组成.方法 从GenBank中下载13株脱硫弧菌科细菌的腺苷酰硫酸还原酶α亚基基因(aprA)的序列,利用Clustal X、Simulated PCR (SPCR)软件比较、评估了2对针对aprA 基因的引物(AprA-3-FW/APS-RV和AprA-1-FW/AprA-5-RV)用于扩增粪便样品中的SRB的特异性.确定PCR引物和条件,进一步摸索并建立DGGE分析体系.结果 Clustal X和SPCR软件分析的结果均表明引物AprA-3-FW/APS-RV优于AprA-1-FW/AprA-5-RV.实际PCR的结果也显示AprA-1-FW/AprA-5-RV扩增效率低并有非特异扩增.建立DGGE体系,对10例健康人肠道中SRB的分析显示,每个个体肠道中SRB的种类有l到5种不等.结论 基于aprA序列的DGGE技术是分析肠道SRB组成的有效方法.  相似文献   

7.
8.
The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5–4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone libraries were constructed using the aprA gene, which encodes adenosine-5′-phosphosulfate reductase subunit A, in order to monitor sulfate-reducing bacteria. In the aprA clone libraries, the most abundant sequences were those from the Desulfosarcina–Desulfococcus (DSS) group. A primer set for a DSS group-specific 16S rRNA gene was used to construct another clone library, analysis of which revealed that the uncultured group of sulfate-reducing bacteria, SEEP SRB-1, accounted for nearly half of the obtained sequences. Quantification of the major bacterial groups by catalyzed reporter deposition-fluorescence in situ hybridization demonstrated that the DSS group accounted for 3.2–4.8% of the total bacterial community below the chemocline. The results suggested that the DSS group was one of the major groups of sulfate-reducing bacteria and that these presumably metabolically versatile bacteria might play an important role in sulfur cycling in Lake Harutori.  相似文献   

9.
An N2 strip gas was used in a packed bed sulfate-reducing bioreactor to recover the dissolved sulfide product and improve sulfate conversion. The highest volumetric productivity obtained was 261 mol H2S m−3 d−1. Lowering the initial pH of the medium from 7 to 6 increased the H2S content of the strip gas from 3.6 to 5.8 mol%. The ratio of strip gas to liquid flow rates (G/L) was found be to a suitable basis for scaling the process. Calculations indicated that modest G/L values (<102) were required to recover the residual dissolved sulfide in a downstream stripping column.  相似文献   

10.
【背景】地下深部存在一个生物圈,深部沉积岩、玄武岩、花岗岩和变质岩等岩性环境的微生物群落已被调查,而地下深部碳酸盐岩岩溶-裂隙热储层微生物群落特征仍然不清。硫酸盐还原菌(sulfate-reducing bacteria,SRB)是地下深部频繁检出的微生物。【目的】建立快速准确定量深部热水硫酸盐还原菌的微滴数字PCR (droplet digital PCR,ddPCR)技术。【方法】以SRB的功能基因dsrB为检测目标,优化SRB ddPCR技术的退火温度,考察其线性范围、敏感性、重复性和特异性,并将该技术用于实际样品的检测。【结果】SRB ddPCR技术的最佳退火温度为54 °C,检测的线性范围为1.1×100?1.1×105 copies/μL-DNA,相关系数R2为0.996,检出限为1 copy/μL-DNA,重复性的相对标准差优于9%,对3种非SRB人工构建的质粒均没有扩增,显示该技术具有很好的线性关系、敏感性、重复性和特异性。利用该技术对冀中地热区深部热水、浅层水和土壤样品进行了检测,平均含量分别为(4.0±8.4)×103 copies/mL、(1.6±3.5)×102 copies/mL和(1.5±1.2)×103 copies/g-dw。与浅层水和土壤相比,深部热水富含SRB菌。【结论】为了提高地下深部生物圈认识和合理开发利用深部热水,建立了一种快速、灵敏、准确的SRB ddPCR检测技术,同时为其他指示菌检测技术的建立提供了参考。  相似文献   

11.
Tetrahydrofolate was shown to function as a methyl acceptor in the anaerobic demethylation of dimethylsulfoniopropionate to methylthiopropionate in cell extracts of the sulfate-reducing bacterium strain WN. Dimethylsulfoniopropionate-dependent activities were 0.56 μmol methyltetrahydrofolate min–1 (mg protein)–1 and were higher than required to explain the growth rate of strain WN on dimethylsulfoniopropionate. The reaction did not require ATP or reductive activation by titanium(III)-nitrilotriacetic acid. Preincubation of the extract under air significantly decreased the activity (35% loss in 3 h). Three other dimethylsulfoniopropionate-demethylating sulfate reducers, Desulfobacterium niacini, Desulfobacterium vacuolatum, and Desulfobacterium strain PM4, had dimethylsulfoniopropionate:tetrahydrofolate methyltransferase activities of 0.16, 0.05, and 0.24 μmol min–1 (mg protein)–1, respectively. No methyltransferase activity to tetrahydrofolate was found with betaine as a substrate, not even in extracts of betaine-grown cells of these sulfate reducers. Dimethylsulfoniopropionate demethylation in cell extracts of strain WN was completely inhibited by 0.5 mM propyl iodide; in the light, the inhibition was far less strong, indicating involvement of a corrinoid-dependent methyltransferase. Received: 24 June 1997 / Accepted: 29 August 1997  相似文献   

12.
13.
目的 检测高脂饲料诱导大鼠肥胖过程中,大鼠肠道内硫酸盐还原菌( sulfate-reducing bacteria,SRB)的数量变化,为研究SRB与肥胖的关系提供参考.方法 20只Wistar大鼠随机分为2组(每组10只),一组饲喂高脂饲料(HFD组)18周,另一组饲喂正常饲料(NCD组,即对照组)18周.以编码腺苷酰硫酸还原酶α亚基的基因(aprA)作为分子标记,通过荧光定量PCR的方法检测两组大鼠在0、8和18周,肠道内SRB的数量变化;同时,以16S rRNA基因作为标记基因定量大鼠肠道内总菌的数量,以计算肠道内SRB在总菌中的比例变化.结果 分组饲喂8周后,高脂饲料饲喂组大鼠的体重与正常饲料组相比显著升高.对SRB的定量结果显示,饲喂8周和18周,高脂饲料组大鼠肠道内SRB的数量和含量与正常饲料组相比显著升高.结论 大鼠肠道中的硫酸盐还原菌与饮食诱导的肥胖密切相关,为进一步研究SRB在肥胖及其相关代谢疾病的发生发展中的作用提供了依据.  相似文献   

14.
15.
The initial activation reactions of anaerobic oxidation of the aromatic hydrocarbons toluene and ethylbenzene were investigated in cell extracts of a toluene-degrading, sulfate-reducing bacterium, Desulfobacula toluolica, and in cell extracts of strain EbN1, a denitrifying bacterium capable of degrading toluene and ethylbenzene. Extracts of toluene-grown cells of both species catalysed the addition of fumarate to the methyl group of [phenyl-14C]-toluene and formed [14C]-labeled benzylsuccinate. Extracts of ethylbenzene-grown cells of strain EbN1 did not catalyse this reaction, but catalysed the formation of 1-phenylethanol and acetophenone from [methylene-14C]-ethylbenzene. Toluene-grown cells of D. toluolica and strain EbN1 synthesised highly induced polypeptides corresponding to the large subunits of benzylsuccinate synthase from Thauera aromatica. These polypeptides were absent in strain EbN1 after growth on ethylbenzene, although a number of different polypeptides were highly induced. Thus, formation of benzylsuccinate from toluene and fumarate appears to be the general initiating step in anaerobic toluene degradation by bacteria affiliated with the phylogenetically distinct β-subclass (strain EbN1 and T. aromatica) and δ-subclass (D. toluolica) of the Proteobacteria. Anaerobic ethylbenzene oxidation proceeds via a different pathway involving a two-step oxidation of the methylene group to an alcohol and an oxo group; these steps are most probably followed by a biotin-independent carboxylation reaction and thiolytic cleavage. Received: 16 March 1998 / Accepted: 27 June 1998  相似文献   

16.
Sulfate-reducing bacteria (SRB) have been observed in mining environments, but their presence has not been linked to specific physico-chemical and mineralogical factors. The present study was undertaken to assess the presence of SRB in several Au and Cu-Zn mine tailings located near Timmins, Ont., Canada, and determine the factors responsible for their presence. Vegetated and non-vegetated mine tailings were sampled for SRB enumeration, pH, Eh, water content, total carbon content and sequential chemical extraction. Results first showed that SRB populations were present at all sites and that their distribution varied with depth. Populations were recovered from neutral pH and slightly anoxic tailings and from highly acidic (pH 2) and oxic tailings. The total carbon content of the tailings was generally low and not related to the presence of vegetation. In addition, the carbon content did not affect SRB population distribution and appeared to be more related to the type of tailings, i.e., oxidized and acidic Cu-Zn tailings contained on average more carbon than Au tailings. Results also indicated that the water content of the tailings varied greatly with depth and was not related to the presence of SRB populations. The sequential chemical extraction showed that the pyrite content of the tailings was lower in Au tailings than in Cu-Zn tailings, and that some oxidized Cu-Zn sites were depleted in pyrite due to microbial and chemical oxidation. Our results indicate that SRB could be cultured from a variety of sites and sample types, and that factors such as pH, Eh, water content and carbon content at the collection sites did not exert control on their presence.  相似文献   

17.
18.
19.
Sediment microbial communities are important for seagrass growth and carbon cycling, however relatively few studies have addressed the composition of prokaryotic communities in seagrass bed sediments. Selective media were used enumerate culturable anaerobic bacteria associated with the roots of the seagrass, Halodule wrightii, the fresh to brackish water plant, Vallisneria americana, and the respective vegetated and unvegetated sediments. H. wrightii roots and sediments had high numbers of sulfate-reducing bacteria whereas iron-reducing bacteria appeared to have a more significant role in V. americana roots and sediments. Numbers of glucose-utilizing but not acetate-utilizing iron reducers were higher on the roots of both plants relative to the vegetated sediments indicating a difference within the iron reducing bacterial community. H. wrightii roots had lower glucose-utilizing iron reducers, and higher acetogenic bacteria than did V. americana roots suggesting different aquatic plants support different anaerobic microbial communities. Sulfur-disproportionating and sulfide-oxidizing bacteria were also cultured from the roots and sediments. These results provide evidence of the potential importance of sulfur cycle bacteria, in addition to sulfate-reducing bacteria, in seagrass bed sediments.  相似文献   

20.
The strict anaerobe Desulfobacter hydrogenophilus is able to grow autotrophically with CO2, H2, and sulfate as sole carbon and energy sources. The generation time at 30°C under autotrophic conditions in a pure mineral medium was 15 h, the growth yield was 8 g cell dry mass per mol sulfate reduced to H2S. Enzymes of the autotrophic CO2 assimilation pathway were investigated. Key enzymes of the Calvin cycle and of the acetyl CoA pathway could not be found. All enzymes of a reductive citric acid cycle were present at specific activities sufficient to account for the observed growth rate. Notably, an ATP-citrate lyase (1.3 mol · min-1 · mg cell protein-1) was present both in autotrophically and in heterotrophically grown cells, which was rapidly inactivated in the absence of ATP. The data indicate that in D. hydrogenophilus a reductive citric acid cycle is operating in autotrophic CO2 fixation. Since other autotrophic sulfate reducers possess an acetyl CoA pathway for CO2 fixation, two different autotrophic pathways occur in the same physiological group.Dedicated to Prof. H. G. Wood on the occasion of his 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号