首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study characterizes the physical-chemical interactions of heparin with human plasma low-density lipoproteins (LDL). A high reactive heparin (HRH) specific for the surface determinants of LDL was isolated by chromatography of commercial bovine lung heparin on LDL immobilized to AffiGel-10. HRH was derivatized with fluoresceinamine and repurified by affinity chromatography, and its interaction with LDL in solution was monitored by steady-state fluorescence polarization. Binding of LDL to fluoresceinamine-labeled HRH (FL . HRH) was saturable, reversible, and specific; HRH stoichiometrically displaced FL . HRH from the soluble complex, and acetylation of lysine residues on LDL blocked heparin binding. Titration of FL.HRH with excess LDL yielded soluble complexes with two LDL molecules per heparin chain (Mr 13,000) characterized by an apparent Kd of 1 microM. Titration of LDL with excess HRH resulted in two classes of heparin binding with two and five heparin molecules bound per LDL and apparent Kd values of 1 and 10 microM, respectively. At physiological pH and ionic strength, the soluble HRH-LDL complexes were maximally precipitated with 20-50 mM Ca2+. Insoluble complexes contained 2-10 HRH molecules per LDL with the final product stoichiometry dependent on the ratio of the reactants. The affinity of HRH for LDL in the insoluble complexes was estimated between 1 and 10 microM. Insoluble LDL-heparin complexes were readily dissociated with 1.0 M NaCl, and their formation was prevented by acetylation of the lysine residues on LDL.  相似文献   

2.
Differential trypsin-accessibility and monoclonal antibodies (Mabs) to human apolipoprotein (apo) B-100 are both important tools for probing apoB structure and conformation on low-density lipoproteins (LDL). In this study, we have mapped greater than 80% of the C-terminal region (720 residues) of LDL apoB-100 using trypsin digestion. Our results extend our previous data [Yang et al. (1986) Nature (Lond.) 323, 738-742] confirming that the C-terminal region of about 420 residues of apoB-100 is largely inaccessible to trypsin, whereas the part just preceding this region has interspersed trypsin-accessible and inaccessible peptides. We have determined the amino acid sequence of specific apoB-100 peptides containing epitopes recognized by four separate Mabs: two epitopes have been mapped to within 20 residues, one has been mapped to 36 residues, and the last to 80 residues. We used polyclonal antisera to identify 16 overlapping clones of varying lengths of apoB-100 cDNAs extending from the C-terminus of apoB-100 cloned in the expression vector, lambda gt11. These clones were then tested against individual Mabs. By nucleotide sequence analysis of overlapping clones that show differential reactivities to different Mabs, we have mapped the individual epitopes of each Mab to within about 50-150 amino acid residues predicted from the DNA sequences. Confirmation and further fine mapping were accomplished by competition for LDL binding using partially purified fusion proteins and chemically synthesized oligopeptides. Two epitopes (Mabs 7 and 22) were mapped to the C-terminal 20 amino acids of apoB-100, one (Mab 16) to residues 4154-4189, and another (Mab 20) to residues 3926-4005. Mab 16 precipitates more than 80% of LDL particles. Mab 20 precipitates only denatured apoB but not native LDL apoB [Milne et al. (1987) Mol. Immunol. 24, 435]. Mabs 7 and 22 are unique in that they precipitate LDL apoB modified by storage much better than freshly isolated LDL-apoB. Although epitope expression and trypsin-accessibility represent two useful probes for the study of protein conformation, there was no obvious correlation between these two parameters when applied to LDL apoB for the antibodies we have examined.  相似文献   

3.
A ligand-blotting procedure which allows detection of heparin-binding proteins is described. Crude commercial heparin was fractionated by chromatography on a column of human plasma low-density lipoproteins immobilized to Sepharose CL-4B. Chromatography yielded an unbound and a bound fraction of heparin, designated URH and HRH, respectively. The HRH fraction was reacted with the N-hydroxysuccinimidyl ester of 3-(p-hydroxyphenyl)propionic acid and then labeled with 125I. Proteins were separated by 3-20% pore-gradient gel electrophoresis, transferred to nitrocellulose, and then assayed for their ability to bind 125I-labeled HRH. Human plasma apolipoproteins B-100, B-48, and E of chylomicrons, very low-density lipoproteins, and low-density lipoproteins bound the 125I-labeled HRH; the radiolabeled heparin did not bind to serum albumin, ferritin, catalase, and lactate dehydrogenase. The ligand-blotting procedure should facilitate the purification of heparin-binding domains from these proteins and, moreover, may be applicable to the investigation of heparin-protein interactions in general.  相似文献   

4.
Primary structure of the heparin-binding site of type V collagen   总被引:2,自引:0,他引:2  
The abilities of collagens, type I, II, III, IV, and V, to bind heparin were examined by heparin-affinity chromatography and binding studies with [35S]heparin. At a physiological pH and ionic strength, only type V collagen bound to heparin. Collagens type I and II showed higher affinities than types III and IV for heparin, but did not bind to a heparin column at a physiological ionic strength. The heparin binding site of type V collagen was located in a 30 kDa CNBr fragment of the alpha 1(V) chain, and the amino acid sequence of this fragment was determined. The 30 kDa fragment contained a cluster of basic amino acid residues, and enzymatic cleavage within this basic domain greatly reduced the heparin-binding activities of the resulting peptides. Thus this basic region is probably the heparin-binding site of type V collagen.  相似文献   

5.
Human apolipoprotein B-100 heparin-binding sites   总被引:13,自引:0,他引:13  
Seven distinct heparin-binding sites have been demonstrated on human apolipoprotein (apo) B-100 by using a combination of digestion with cyanogen bromide or Staphylococcus aureus V-8 protease and heparin-Sepharose affinity chromatography. Based on fragment analysis, the approximate boundaries of the seven binding sites are as follows: site A, residues 5-99; site B, residues 205-279; site C, residues 875-932; site D, residues 2016-2151; site E, residues 3134-3209; site F, 3356-3489; and site G, residues 3659-3719. In sites E and F, two short regions enriched in basic amino acids have been identified, and it is likely that they are responsible for a major portion of the heparin-binding properties of these sites. The relative binding affinity of each of the seven sites was estimated in two ways. First, the affinity was assessed in a ligand blot assay using a 125I-labeled high-reactive heparin subfraction. Second, apoB-100 fragments generated by cyanogen bromide or S. aureus V-8 protease were separated into low- and high-affinity fractions by gradient salt elution of a heparin-Sepharose column. The distribution of the seven binding sites in the two fractions was determined in an immunoblotting assay using antibodies specific to each site, i.e. antibodies raised against synthetic peptide sequences found within each of the seven sites. The results of these two approaches demonstrate that site E and, to a somewhat lesser extent, site F bind to heparin with the highest affinity. Based on the analogy with apoE, in which the high-affinity heparin-binding site coincides with the domain of the protein that interacts with apoB,E (low density lipoprotein) receptors, the results of this study indicate that site E and site F, either singly or in combination, might constitute the receptor binding domain of apoB-100.  相似文献   

6.
Obama T  Kato R  Masuda Y  Takahashi K  Aiuchi T  Itabe H 《Proteomics》2007,7(13):2132-2141
Oxidatively modified low-density lipoprotein (oxLDL) is one of the major factors involved in the development of atherosclerosis. Because of the insolubility of apolipoprotein B-100 (apoB-100) and the heterogeneous nature of oxidative modification, modified structures of apoB-100 in oxLDL are poorly understood. We applied an on-Membrane sample preparation procedure for LC-MS/MS analysis of apoB-100 proteins in native and modified low-density lipoprotein (LDL) samples to eliminate lipid components in the LDLs followed by collection of tryptic digests of apoB-100. Compared with a commonly used in-gel digestion protocol, the sample preparation procedure using PVDF membrane greatly increased the recovery of tryptic peptides and resulted in improved sequence coverage in the final analysis, which lead to the identification of modified amino acid residues in copper-induced oxLDL. A histidine residue modified by 4-hydroxynonenal, a major lipid peroxidation product, as well as oxidized histidine and tryptophan residues were detected. LC-MS/MS in combination with the on-Membrane sample preparation procedure is a useful method to analyze highly hydrophobic proteins such as apoB-100.  相似文献   

7.
In contrast to the multiple low abundance 2,4-dinitrophenylhydrazine-reactive tryptic peptides formed by oxidation of LDL with reagent HOCl in vitro, myeloperoxidase-catalyzed oxidation produces a dominant product in considerably greater yield and selectivity. This modified peptide had a single amino-terminal sequence corresponding to amino acids 53-66 of apolipoprotein B-100 (apoB-100), but its mass spectra indicated a significantly higher mass than could be reconciled with simple modifications of this peptide. Subsequent studies indicate that this product appears to result from N-chlorination of the N-terminal amino group of apoB-100 and dehydrohalogenation to the corresponding imine, which may form the hydrazone derivative directly, or after hydrolysis to the ketone. The methionine residue is oxidized to the corresponding sulfoxide, and the primary sequence peptide (residues 1-14 of apoB-100) is linked by the intramolecular disulfide bond between C-12 and C-61 to the peptide composed of residues 53-66, as we have observed previously (Yang, C-Y., T. W. Kim, S. A. Weng, B. Lee, M. Yang, and A. M. Gotto, Jr. 1990. Proc. Natl. Acad. Sci. USA. 87: 5523-5527) in unmodified LDL. The selective oxidation by myeloperoxidase of the N-terminal amine suggests strong steric effects in the approach of substrate to the enzyme catalytic site, an effect that may apply to other macromolecules and to cell surface molecules.  相似文献   

8.
We have identified a mutation of apolipoprotein B (apoB) in a kindred with hypobetalipoproteinemia. Four affected members had plasma concentrations of total cholesterol of 115 +/- 14, low density lipoprotein (LDL)-C of 48 +/- 11, and apoB of 28 +/- 9 (mg/dl mean +/- SD). The values correspond to approximately 30% the values for unaffected relatives. Triglyceride and high density lipoprotein (HDL)-C concentrations were 92 +/- 50 and 49 +/- 4, respectively, neither significantly different from unaffected relatives. Western blots of plasma apoB of affected subjects showed two major bands: apoB-100 and an apoB-75 (mol wt of approximately 418,000). DNA sequencing of the appropriate polymerase chain reaction (PCR)-amplified genomic DNA segment revealed a deletion of the cytidine at nucleotide position 10366, resulting in a premature stop codon at amino acid residue 3387. In apoB-75/apoB-100 heterozygotes, two LDL populations containing either apoB-75 or apoB-100 could be distinguished from each other by gel permeation chromatography and by immunoblotting of nondenaturing gels using monoclonal antibodies B1B3 (epitope between apoB amino acid residues 3506-3635) and C1.4 (epitope between residues 97-526). ApoB-75 LDL were smaller and more dense than apoB-100 LDL. To determine whether the low concentration of apoB-75 was due to its enhanced LDL-receptor-mediated removal, apoB-75 LDL were isolated from the proband's d 1.063-1.090 g/ml fraction (which contained most of the apoB-75 in his plasma) by chromatography on anti-apoB and anti-apoA-I immunoaffinity columns. The resulting pure apoB-75 LDL fraction interacted with the cells 1.5-fold more effectively than apoB-100 LDL (d 1.019-1.063 g/ml). To determine the physiologic mechanism responsible for the hypobetalipoproteinemia, in vivo kinetic studies were performed in two affected subjects, using endogenous labeling of apoB-75 and apoB-100 with [13C]leucine followed by multicompartmental kinetic analyses. Fractional catabolic rates of apoB-75 VLDL and LDL were 2- and 1.3-fold those of apoB-100 very low density lipoprotein (VLDL) and LDL, respectively. Production rates of apoB-75 were approximately 30% of those for apoB-100. This differs from the behavior of apoB-89, a previously described variant, whose FCRs were also increased approximately 1.5-fold relative to apoB-100, but whose production rates were nearly identical to those of apoB-100. Thus, in contrast to the apoB-89 mutation, the apoB-75 mutation imparts two physiologic defects to apoB-75 lipoproteins that account for the hypobetalipoproteinemia, diminished production and increased catabolism.  相似文献   

9.
Successive rechromatography of commercial bovine lung heparin on human plasma low density lipoproteins (LDL) immobilized to AffiGel-10 yielded four high reactive heparin (HRH-I to IV) fractions and an unreactive fraction (URH). HRH-I was the most sulphated HRH fraction whereas URH had the least sulphation. In the presence of 10 mM Ca2+, LDL were precipitated by these heparins in the following order: HRH-II greater than HRH-III greater than HRH-IV greater than HRH-I greater than URH. The average molecular weight of HRH-I to IV was 8600, 11400, 10,100, and 10,000, respectively. A plot of log molecular weight versus the concentration of HRH required to give half-maximal precipitation of LDL showed a negative correlation (r = -0.880). These results indicate that heparin chain length is an important determinant of heparin binding to LDL in solution and may have relevance to the binding and precipitation of LDL in the arterial wall.  相似文献   

10.
The conformational changes of human apolipoprotein (apo) B-100 which accompany the conversion of plasma very low density lipoproteins (VLDL) to low density lipoproteins (LDL) were investigated by studying the accessibility of apoB-100 in LDL and VLDL to limited proteolysis with cathepsin D, an aspartyl proteinase involved in intracellular protein degradation. We characterized the proteolytic products of apoB-100 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by NH2-terminal sequence analysis to locate cleavage sites. The results identified at least 10 cleavage products generated from apoB-100 and showed differential accessibility of cleavage sites for cathepsin D in apoB-100 between LDL and VLDL. We identified a specific peptide region (residues 2660-2710), which is preferentially accessible to limited proteolysis by cathepsin D but inaccessible to limited proteolysis by 12 other enzymes tested. Within this peptide region, cathepsin D cleaved apoB-100 of LDL and VLDL preferentially at different sites, separated by 33-36 amino acids (2665-2666 or 2668-2669 (LDL) and 2701-2702 (VLDL]. In addition, we identified a cleavage site, located at residues 3272-3273, specific for cathepsin D, which is contained within the COOH-terminal enzyme-accessible peptide region (residues 3180-3280), which we have demonstrated using 12 endoproteases with various specificities. The previously identified NH2-terminal region (residues 1280-1320) appears to be resistant to limited cleavage by cathepsin D. However, a new site was revealed only approximately 66 kDA from the NH2 terminus. We conclude that differential accessibility and the shift of the novel scission site for cathepsin D by 33-36 amino acids indicate significant differences in local conformation at these sites in apoB-100 as VLDL are converted to LDL.  相似文献   

11.
Regional specificities of monoclonal anti-human apolipoprotein B antibodies   总被引:5,自引:0,他引:5  
The usefulness of monoclonal antibodies as probes of protein structure is directly related to knowledge of the structures and locations of the epitopes with which they interact. In this report we provide a detailed map of 13 epitopes on apoB-100 defined by our anti-apoB monoclonal antibodies based on current information on the amino acid sequence of apoB-100. To localize antibody specificities to smaller regions along the linear sequence of the apoB-100 molecule we used a) thrombin- and kallikrein-generated fragments of apoB-100; b) beta-galactosidase- apoB fusion proteins; c) heparin; and d) antibody versus antibody competition experiments. Most of the monoclonal antibodies elicited by immunization with LDL were directed towards epitopes within the first 1279 amino terminal (T4/K2 fragments) or last 1292 carboxyl terminal amino acid residues (T2/K4 fragments) of apoB-100. One epitope localized to the mid-portion of apoB-100 was elicited by immunization with VLDL (D7.2). Saturating amounts of heparin bound to LDL did not inhibit the binding of any of the monoclonal antibodies to their respective epitopes on apoB-100, indicating that none of the antibody determinants is situated close to any of the reported heparin binding sites on LDL apoB. We examined the expression of apoB epitopes on VLDL subfractions and LDL isolated from a normolipidemic donor. The apparent affinities with which the antibodies interacted with their respective epitopes on the VLDL subfractions and LDL uniformly increased as follows: LDL greater than VLDL3 greater than VLDL2 greater than VLDL1, suggesting that each of the major regions of apoB-100 is progressively more exposed as normal VLDL particles become smaller in size and epitopes are most exposed in LDL. Previous experiments utilizing hypertriglyceridemic VLDL subfractions yielded similar results, but the rank order of VLDL subfractions and LDL was not the same for all antibodies tested. Thus, differences in apoB epitope expression on VLDL particles of differing sizes is a general phenomenon, but the expression of apoB epitopes in hypertriglyceridemic VLDL appears to be more heterogeneous than is the case for VLDL from normolipidemic donors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Apolipoprotein (apo)-B-100 is the ligand that mediates the clearance of low density lipoprotein (LDL) from the circulation by the apoB,E (LDL) receptor pathway. Clearance is mediated by the interaction of a domain enriched in basic amino acid residues on apoB-100 with clusters of acidic residues on the apoB,E (LDL) receptor. A model has been proposed for the LDL receptor binding domain of apoB-100 based on the primary amino acid sequence (Knott, T. J., et al. 1986. Nature. 323: 734-738). Two clusters of basic residues (A: 3147-3157 and B: 3359-3367) are apposed on the surface of the LDL particle by a disulfide bridge between Cys 3167 and 3297. Support for this single domain model has been obtained from the mapping of epitopes for anti-apoB monoclonal antibodies that block the binding of apoB to the LDL receptor. Here we test this model by comparing the nucleotide (from 9623 to 10,442) and amino acid sequence (from 3139 to 3411) of apoB-100 in seven species (human, pig, rabbit, rat, Syrian hamster, mouse, and chicken). Overall, this region is highly conserved. Cluster B maintains a strong net positive charge and is homologous across species in both primary and secondary structure. However, the net positive charge of region A is not conserved across these species, but the region remains strongly hydrophilic. The secondary structure of the region between clusters A and B is preserved, but the disulfide bond is unique to the human sequence. This study suggests that the basic region B is primarily involved in the binding of apoB-100 to the apoB,E (LDL) receptor.  相似文献   

13.
Pietzsch J  Julius U 《FEBS letters》2001,491(1-2):123-126
gamma-Glutamyl semialdehyde is a primary oxidation product of apolipoprotein (apo) B-100 proline (Pro) and arginine (Arg) side chain residues. By reduction gamma-glutamyl semialdehyde forms 5-hydroxy-2-aminovaleric acid (HAVA). Here we describe the application of sensitive and specific HAVA measurement to characterize the formation of gamma-glutamyl semialdehyde in several domains of apoB-100 in LDL(1) (S(f) 7-12) and LDL(2) (S(f) 0-7) subfractions subjected to oxidative damage in the presence of iron in vitro. Results suggest that susceptibility of apoB-100 Pro and Arg residues toward oxygen radicals drastically changes along the lipoprotein metabolic cascade.  相似文献   

14.
The human liver apoB-100 gene cloned in the lambda gt-11 expression vector expresses fusion proteins reacting with apoB antibodies. A fusion protein induced from a apoB-lambda gt-11 clone reacted with apoB-100 monoclonal antibodies known to block the binding of LDL to the LDL receptor. The fusion protein contains an amino acid sequence domain enriched in positively charged residues which is complementary to the negatively charged amino acids present in the consensus LDL receptor binding domain. This sequence of apoB-100 is proposed as a binding domain for the interaction with the LDL receptor. Comparison of derived amino acid sequences from the entire structure of apoB-100 molecule revealed several similar domains enriched in positively charged amino acids. A consensus sequence of the potential LDL binding domain was identified which contained positively charged amino acids at positions 1, 5 and 8 and a loop of 8-11 amino acids followed by two adjacent positively charged amino acids. These results are interpreted as indicating that there are several potential LDL receptor binding domains in apoB-100.  相似文献   

15.
The complete cDNA and amino acid sequence of human apolipoprotein B-100   总被引:15,自引:0,他引:15  
We have determined the complete sequence of apolipoprotein (apo) B-100 cDNA. It is 14.1 kilobases in length and codes for a 4563-amino acid protein, including a 27-amino acid signal peptide and a 4536-amino acid mature protein. Further, we identified 2366 residues of apoB-100 by direct sequence analysis of apoB-100 tryptic peptides. The mature peptide is characterized by high hydrophobicity (0.916 kcal/residue) and predicted beta-sheet content (21%). Dot matrix analysis revealed the presence of many long internal repeats in apoB-100. The mature peptide contains 25 cysteine residues, 12 of which are in the N-terminal 500 residues. Twenty potential N-linked glycosylation sites were identified, of which 13 were proven to be glycosylated, and 4 were found not to be glycosylated by direct analysis of tryptic peptides. Our findings on apoB structure provide a basis for future experimentation on the role of apoB-100-containing lipoproteins in atherosclerosis.  相似文献   

16.
Through its interaction with the low density lipoprotein (LDL) receptor, apolipoprotein (apo) B-100 is a major determinant of LDL metabolism and plasma cholesterol. Its receptor binding ability is conformation-dependent and requires its expression on the right lipoprotein particles. The structural signal that targets apoB-100 to LDL is unknown. We have microinjected a human apoB-100 minigene construct comprising less than 25% of the apoB-100 sequence driven by the natural apoB promoter to produce transgenic mice. The transgene product was expressed at a high level and was present exclusively in the LDL of these animals. Analysis of the responsible sequence (residues 2878-3925 of apoB-100) reveals unique structural features that may be important in its role as an LDL-targeting domain.  相似文献   

17.
Heparin-binding histidine and lysine residues of rat selenoprotein P   总被引:3,自引:0,他引:3  
Selenoprotein P is a plasma protein that has oxidant defense properties. It binds to heparin at pH 7.0, but most of it becomes unbound as the pH is raised to 8.5. This unusual heparin binding behavior was investigated by chemical modification of the basic amino acids of the protein. Diethylpyrocarbonate (DEPC) treatment of the protein abolished its binding to heparin. DEPC and [(14)C]DEPC modification, coupled with amino acid sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry of peptides, identified several peptides in which histidine and lysine residues had been modified by DEPC. Two peptides from one region (residues 80-95) were identified by both methods. Moreover, the two peptides that constituted this sequence bound to heparin. Finally, when DEPC modification of the protein was carried out in the presence of heparin, these two peptides did not become modified by DEPC. Based on these results, the heparin-binding region of the protein sequence was identified as KHAHLKKQVSDHIAVY. Two other peptides (residues 178-189 and 194-234) that contain histidine-rich sequences met some but not all of the criteria of heparin-binding sites, and it is possible that they and the histidine-rich sequence between them bind to heparin under some conditions. The present results indicate that histidine is a constituent of the heparin-binding site of selenoprotein P. The presence of histidine, the pK(a) of which is 7.0, explains the release of selenoprotein P from heparin binding as pH rises above 7.0. It can be speculated that this property would lead to increased binding of selenoprotein P in tissue regions that have low pH.  相似文献   

18.
We have previously shown that lipoprotein(a) (Lp(a)) assembly involves an initial noncovalent interaction between sequences within apolipoprotein(a) (apo(a)) kringle IV types 5-8 and the amino terminus of apolipoprotein B-100 (sequences between amino acids 680 and 781 in apoB-100), followed by formation of a disulfide bond. In the present study, citraconylation of lysine residues in apoB-100 abolished the ability of the modified low density lipoprotein to associate with apo(a), thereby demonstrating a direct role for lysine residues in apoB in the first step of Lp(a) assembly. To identify specific lysine residues in the amino terminus of apoB that are required for the noncovalent interaction, we initially used an affinity chromatography method in which recombinant forms of apo(a) (r-apo(a)) were immobilized on Sepharose beads. Assessment of the ability of carboxyl-terminal truncations of apoB-18 to bind to r-apo(a)-Sepharose revealed that a 25-amino acid sequence in apoB (amino acids 680-704) bound specifically to apo(a) in a lysine-dependent manner; citraconylation of the lysine residues in the apoB derivative encoding this sequence abolished the binding interaction. Using fluorescence spectrometry, we found that a synthetic peptide corresponding to this sequence bound directly to apo(a); the peptide also reduced covalent Lp(a) formation. Lysine residues present in this sequence (Lys(680) and Lys(690)) were mutated to alanine in the context of apoB-18. We found that the apoB-18 species containing the Lys(680) mutation was incapable of binding to r-apo(a)-Sepharose columns, whereas the apoB-18 species containing the Lys(690) mutation exhibited slightly reduced binding to these columns. Taken together, our data indicate that Lys(680) is critical for the noncovalent interaction of apo(a) and apoB-100 that precedes covalent Lp(a) formation.  相似文献   

19.
Immunochemical studies of equine fibrinogen were conducted to characterize the structural basis for the immunologic cross-reactivity observed between human and equine A alpha chains when employing an antiserum to the 26K, human cyanogen bromide (CNBr) fragment, A alpha 241-476 (CNBr VIII). A 38K, equine CNBr fragment that reacts with this antiserum was isolated from CNBr-digested equine fibrinogen by Sephadex G-100 gel filtration. It was further purified by sequential hydrophobic chromatography on phenyl-Sepharose CL-4B, followed by reversed-phased (C-8) high-performance liquid chromatography (HPLC). NH2-Terminal analysis of the purified fragment, designated EqA alpha CNBr, identified one major sequence whose first three residues, E-L-E, were identical with those of human CNBr VIII. Tryptic and staphylococcal protease digests of the equine fragment were resolved by reversed-phase HPLC (C-4, C-18), and the separated components were characterized by amino acid analysis and automated Edman degradation. A total of 34 tryptic and 20 staph protease peptides yielded sequence information that permitted the alignment of 271 equine residues with residues A alpha 241-517 from the COOH-terminal two-thirds of the human A alpha chain so that 63% of the possible matches were identical. Other features of interest included (1) an amino acid substitution in which the methionine residue at A alpha 476 in the human A alpha chain was replaced by a valine residue, thus accounting, in part, for the larger EqA alpha CNBr fragment obtained from the equine molecule, and (2) a region of striking homology in which 36 successive residues, corresponding to A alpha 428-464 in the human A alpha chain, were identical in both species. These findings, together with available structural data for the COOH-terminal portion of the rat and bovine A alpha chains, indicate that the region corresponding to (human) A alpha 240-517 represents a conserved portion of the fibrinogen molecule. This may, in turn, explain the difficulties encountered when trying to raise monoclonal antibodies to cross-linking regions that are contained within the COOH-terminal two-thirds of the human A alpha chain.  相似文献   

20.
Monospecific polyclonal antibodies (MPAbs) to apoB-100 regions Cys3734 and Cys4190 were isolated by affinity chromatography using the synthetic polypeptides, Q3730VPSSKLDFREIQIYKK3746 and G4182IYTREELSTMFIREVG4198, respectively, coupled to a hydrophilic resin. Molecular modeling and fluroescence labeling studies have suggested that Cys67 located in kringle type 9 (LPaK9, located between residues 3991 and 4068 of the apo[a] sequence inferred by cDNA) of the apo[a] molecule is disulfide linked to Cys3734 of apoB-100 in human lipoprotein[a] (Lp[a]). This possibility has been further explored with MPAbs. Four species of MPAbs directed to a Cys3734 region of apoB-100 (3730–3746) were isolated from goat anti-human LDL serum by a combination of synthetic peptide (Q3730VPSSKLDFREIQIYKK3746) affinity chromatography and preparative electrophoresis (electrochromatography). MPAbs to the Cys4190 region of apoB-100, a second or alternative disulfide link-site between apo[a] and apoB-100, were also isolated using a synthetic peptide (G4182IYTREELSTMFIREVG4198) affinity resin. Results of immunoassays showed that binding of these four MPAbs to Lp[a] was significantly lower than to LDL. In contrast, MPAbs to the apoB-100 region 4182–4198 which contains Cys4190, a second or alternative disulfide link-site between apo[a] and apoB-100, displayed a less significant difference in binding to Lp[a] and LDL. These results provide additional evidence that the residues 3730–3746 of apoB-100 interact significantly with apo[a] in Lp[a], and that Cys3734 is a likely site for the disulfide bond connecting apo[a] and apoB-100.Abbreviations amino acids single letter, e.g., alanine, A, etc. - BSA bovine serum albumin - d density (g/ml) - aca -aminocaproic acid - ELISA enzyme-linked immunosorbant assay - DTT dithiothreitol - HRP horseradish peroxidase - MAb monoclonal antibody - MPAb monospecific polyclonal antibody - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - Na2EDTA sodium ethylenediaminetetraacetate - NaN3 sodium azide - TRIS (hydroxymethyl)aminomethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号