首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

2.
Truncated sequences of human telomeric DNA can readily assemble to form parallel stranded quadruplexes containing A- and G-tetrads. The formation of an A-tetrad is highly context-dependent and the relationship between the formation of an A-tetrad and the glycosidic torsion angle of the adenosine residues implicated has not been completely clarified so far. In order to give a further insight in this issue we synthesized the modified oligomers d(ABrGGGT) and d(TABrGGGT), two different truncations of the human telomeric sequence containing a 8-bromoadenosine residue, named ABr. NMR data show that both the modified oligomers are able to perfectly fold into highly symmetric quadruplexes with all strands parallel to each other. Molecular modeling studies were performed on both [d(ABrGGGT)]4 and [d(TABrGGGT)]4, indicating that a bulky substituent, such as a bromine atom at the C8 position of adenines, can force the glycosidic bond to adopt a syn conformation, stabilizing the resulting quadruplexes.  相似文献   

3.
Truncated sequences of human telomeric DNA can readily assemble to form parallel stranded quadruplexes containing A- and G-tetrads. The formation of an A-tetrad is highly context-dependent and the relationship between the formation of an A-tetrad and the glycosidic torsion angle of the adenosine residues implicated has not been completely clarified so far. In order to give a further insight in this issue we synthesized the modified oligomers d(ABrGGGT) and d(TABrGGGT), two different truncations of the human telomeric sequence containing a 8-bromoadenosine residue, named ABr. NMR data show that both the modified oligomers are able to perfectly fold into highly symmetric quadruplexes with all strands parallel to each other. Molecular modeling studies were performed on both [d(ABrGGGT)]4 and [d(TABrGGGT)]4, indicating that a bulky substituent, such as a bromine atom at the C8 position of adenines, can force the glycosidic bond to adopt a syn conformation, stabilizing the resulting quadruplexes.  相似文献   

4.
We have conducted two dimensional NOESY studies on the molecule d(G2T5G2) to characterize the structure of the tetramolecular complex previously identified by calorimetric and spectroscopic studies (1). Analysis of the NOE and exchange cross peaks observed in the NOESY spectra establishes the formation of structured conformations at low temperature (5 degrees C). Significantly, within each strand of these structured conformations, the G1 and G8 residues adopt syn glycosidic torsion angles, while the G2 and G9 residues adopt anti glycosidic torsion angles. Consequently, any structure proposed for the tetramolecular complex of d(G2T5G2) must have alternating G(syn) and G(anti) glycosidic torsion angles within each strand. The implications of this observation for potential structures of the tetramolecular complex of d(G2T5G2) are discussed.  相似文献   

5.
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.  相似文献   

6.
Telomeres are DNA-protein structures at the ends of eukaryotic chromosomes, the DNA of which comprise noncoding repeats of guanine-rich sequences. Telomeric DNA plays a fundamental role in protecting the cell from recombination and degradation. Telomeric sequences can form quadruplex structures stabilized by guanine quartets. These structures can be constructed from one, two, or four oligonucleotidic strands. Here, we report the thermodynamic characterization of the stability, analyzed by differential scanning calorimetry, of three DNA quadruplexes of different molecularity, all containing four G-tetrads. The conformational properties of these quadruple helices were studied by circular dichroism. The investigated oligomers form well-defined G-quadruplex structures in the presence of sodium ions. Two have the truncated telomeric sequence from Oxytricha, d(TGGGGT) and d(GGGGTTTTGGGG), which form a tetramolecular and bimolecular quadruplex, respectively. The third sequence, d(GGGGTTGGGGTGTGGGGTTGGGG) was designed to form a unimolecular quadruplex. The thermodynamic parameters of these quadruplexes have been determined. The tetramolecular structure is thermodynamically more stable than the bimolecular one, which, in turn, is more stable than the unimolecular one. The experimental data were discussed in light of the molecular-modeling study.  相似文献   

7.
Using circular dichroism spectroscopy, gel electrophoresis, and ultraviolet absorption spectroscopy, we have studied quadruplex folding of RNA/DNA analogs of the Oxytricha telomere fragment, G(4)T(4)G(4), which forms the well-known basket-type, antiparallel quadruplex. We have substituted riboguanines (g) for deoxyriboguanines (G) in the positions G1, G9, G4, and G12; these positions form the terminal tetrads of the G(4)T(4)G(4) quadruplex and adopt syn, syn, anti, and anti glycosidic geometries, respectively. We show that substitution of a single sugar was able to change the quadruplex topology. With the exception of G(4)T(4)G(3)g, which adopted an antiparallel structure, all the RNA/DNA hybrid analogs formed parallel, bimolecular quadruplexes in concentrated solution at low salt. In dilute solutions ( approximately 0.1 mM nucleoside), the RNA/DNA hybrids substituted at positions 4 or 12 adopted antiparallel quadruplexes, which were especially stable in Na(+) solutions. The hybrids substituted at positions 1 and 9 preferably formed parallel quadruplexes, which were more stable than the nonmodified G(4)T(4)G(4) quadruplex in K(+) solutions. Substitutions near the 3'end of the molecule affected folding more than substitutions near the 5'end. The ability to control quadruplex folding will allow further studies of biophysical and biological properties of the various folding topologies. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 797-806, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

8.
In this paper, we report the NMR structural study of two quadruplex structures formed by truncations of the human telomeric sequence and containing a modified base, namely d(AprGGGT) and d(TAprGGGT), where Apr indicates 2'-deoxy-8-(propyn-1-yl)adenosines. Both oligonucleotides have been found to form 4-fold symmetric G-quadruplex structures with all strands parallel and equivalent to each other and characterized by higher thermal stabilities than the natural counterparts. The presence of the propynyl groups affects the conformations of the 5' edge of both quadruplexes in such a way to prevent the formation of one of the two possible H-bond patterns observed for a canonical A-tetrad. The increased thermal stabilities of the modified quadruplexes seem to be mostly due to a prevalent syn glycosidic conformation assumed by the Apr residues.  相似文献   

9.
The solid phase syntheses of the bunch oligonucleotides and based on the sequences of the natural oligodeoxynucleotides (ODNs) d(TG2TG2C) and d(CG2TG2T), respectively, attached to a non-nucleotidic tetrabranched linker, are reported. Bunch-ODNs and were shown to form more stable monomolecular parallel G-quadruplexes and when compared with their tetramolecular counterparts [d(TG2TG2C)]4 and [d(CG2TG2T)]4, respectively. The structure and stability of all the synthesized complexes have been investigated by circular dichroism (CD), CD thermal denaturation experiments, and 1H-NMR (nuclear magnetic resonance) experiments at variable temperatures. Particularly, the spectroscopic data confirmed that 1 adopts a T-tetrad containing parallel-stranded quadruplex structure as in the tetramolecular complex.  相似文献   

10.
G‐quadruplexes are characteristic structural arrangements of guanine‐rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G‐quadruplexes. Recently, we reported the synthesis and structural studies of new G‐quadruplex forming oligodeoxynucleotides (ODNs) in which the 3′‐ and/or the 5′‐ends of four ODN strands are linked together by a non‐nucleotidic tetra‐end‐linker (TEL). These TEL‐ODN analogs having the sequence TGGGGT are able to form parallel G‐quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL‐G‐quadruplexes using a combination of circular dichroism (CD), CD melting, 1H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL‐(TGGGGT)4 analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL‐G‐quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G‐quadruplexes formed by TEL‐ODNs having the longer TEL (L 1 ‐ 4 ) are more stable than the corresponding G‐quadruplexes having the shorter TEL (S 1 ‐ 4 ). The relative stability of S 1 ‐ 4 was also reported. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 466–477, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Repetitive 5'GGXGG DNA segments abound in, or near, regulatory regions of the genome and may form unusual structures called G-quadruplexes. Using NMR spectroscopy, we demonstrate that a family of 5'GCGGXGGY sequences adopts a folding topology containing double-chain reversals. The topology is composed of two bistranded quadruplex monomeric units linked by formation of G:C:G:C tetrads. We provide a complete thermodynamic and kinetic analysis of 13 different sequences using absorbance spectroscopy and DSC, and compare their kinetics with a canonical tetrameric parallel-stranded quadruplex formed by TG4T. We demonstrate large differences (up to 10(5)-fold) in the association constants of these quadruplexes depending on primary sequence; the fastest samples exhibiting association rate equal or higher than the canonical TG4T quadruplex. In contrast, all sequences studied here unfold at a lower temperature than this quadruplex. Some sequences have thermodynamic stability comparable to the canonical TG4T tetramolecular quadruplex, but with faster association and dissociation. Sequence effects on the dissociation processes are discussed in light of structural data.  相似文献   

12.
Two-dimensional 1H NMR studies on the dimeric hairpin quadruplex formed by d(G3T4G3) in the presence of either NaCl or KCl are presented. In the presence of either salt, the quadruplex structure is characterized by half the guanine nucleosides in the syn conformation about the glycosidic bond, the other half in the anti conformation, as reported for other similar sequences. However, 1H NOESY and 1H-31P heteronuclear correlation experiments demonstrate that the deoxyguanosines do not strictly alternate between syn and anti along individual strands. Thus we find the following sequences with regard to glycosidic bond conformation: 5'-G1SG2SG3AT4AT5A-T6AT7AG8SG9AG10A-3' and 5'-G11SG12AG13AT14AT1 5AT16AT17AG18SG19SG20A-3', where S and A denote syn and anti, respectively. This represents the first experimental evidence for a nucleic acid structure containing two sequential nucleosides in the syn conformation. The stacking interactions of the resulting quadruplex quartets and their component bases have been evaluated using unrestrained molecular dynamics calculations and energy component analysis. These calculations suggest that the sequential syn-syn/anti-anti and syn-anti quartet stacks are almost equal in energy, whereas the anti-syn stack, which is not present in our structure, is energetically less favorable by about 4 kcal/mol. Possible reasons for this energy difference and its implications for the stability of quadruplex structures are discussed.  相似文献   

13.
Tetramolecular G-quadruplexes result from the association of four guanine-rich strands. Modification of the backbone strand or the guanine bases of the oligonucleotide may improve stability or introduce new functionalities. In this regard, the 8 position of a guanosine is particularly suitable for introduction of modifications since as it is positioned in the groove of the quadruplex structure. Modifications at this position should not interfere with structural assembly as would changes at Watson-Crick and Hoogsteen sites. In this study, we investigated the effect of an 8-methyl-2′-deoxyguanosine residue (M) on the structure and stability of tetramolecular parallel G-quadruplexes. In some cases, the presence of this residue resulted in the formation of unusual quadruplex structures containing all-syn tetrads. Furthermore, the modified nucleoside M at the 5′-end of the sequence accelerated quadruplex formation by 15-fold or more relative to the unmodified oligonucleotide, which makes this nucleobase an attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.  相似文献   

14.
DNA guanine quadruplexes are all based on stacks of guanine tetrads, but they can be of many types differing by mutual strand orientation, topology, position and structure of loops, and the number of DNA molecules constituting their structure. Here we have studied a series of nine DNA fragments (G(3)Xn)(3)G(3), where X = A, C or T, and n = 1, 2 or 3, to find how the particular bases and their numbers enable folding of the molecule into quadruplex and what type of quadruplex is formed. We show that any single base between G(3) blocks gives rise to only four-molecular parallel-stranded quadruplexes in water solutions. In contrast to previous models, even two Ts in potential loops lead to tetramolecular parallel quadruplexes and only three consecutive Ts lead to an intramolecular quadruplex, which is antiparallel. Adenines make the DNA less prone to quadruplex formation. (G(3)A(2))(3)G(3) folds into an intramolecular antiparallel quadruplex. The same is true with (G(3)A(3))(3)G(3) but only in KCl. In NaCl or LiCl, (G(3)A(3))(3)G(3) prefers to generate homoduplexes. Cytosine still more interferes with the quadruplex, which only is generated by (G(3)C)(3)G(3), whereas (G(3)C(2))(3)G(3) and (G(3)C(3))(3)G(3) generate hairpins and/or homoduplexes. Ethanol is a more potent DNA guanine quadruplex inducer than are ions in water solutions. It promotes intramolecular folding and parallel orientation of quadruplex strands, which rather corresponds to quadruplex structures observed in crystals.  相似文献   

15.
CD and NMR studies on heterochiral oligodeoxynucleotides (d/l-ODNs) forming quadruplex structures are reported. Heterochiral ODNs, based on sequence TGGGGT, are able to form stable either right- or left-handed quadruplexes depending on d/l ratio and residues position. Results suggest that the 3′-end and the core of the G-run are more important than the 5′-end in determining the quadruplex handness. Particularly, oligonucleotide TDGDGLGLGDTD (L34) at low temperatures forms a well-defined left-handed quadruplex, notwithstanding it is mostly composed by natural d residues. This structure is characterized by three all-anti G-tetrads and one all-syn G-tetrad.  相似文献   

16.
Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG(4)T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3'- or 5'-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3'- or 5'-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, (1)H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.  相似文献   

17.
Abstract

Guanine rich DNA sequences of regulatory genomic regions form secondary structures known as G-quadruplexes usually stabilized by tetrads of Hoogsteen hydrogen bonded guanines. The in vivo existence of G-quadruplexes ascertains their biological roles. Human telomeric repeats are the most studied G-rich sequences. The four repeat Giardia telomeric sequence (TAGGG)4 differs from its human counterpart (TTAGGG)4, by deletion of one T at the G-tract intervening site of each repeat. We show here that whilst the two repeat Giardia telomeric sequence (TAGGG)2 forms parallel and antiparallel quadruplexes with tetramolecular topology exclusively, the four repeat version (TAGGG)4 forms a tetramolecular (antiparallel) and unimolecular (parallel) quadruplexes in Na+. The tetramolecular (antiparallel) G-quadruplex formed by four repeats of Giardia telomeric sequence is stabilized by the additional Watson-Crick bonding between its intervening TA bases aligned in antiparallel fashion. Four stranded antiparallel quadruplex for four repeats of any telomeric sequence have not been characterized till date. We hypothesize that telomeric association in antiparallel fashion, (via G-overhangs to form tetramolecular quadruplex) could be a biologically relevant molecular event. Further, coexistence of Hoogsteen as well as Watson-Crick base pairing might give insight for recognition of conformationally diverse DNA structures by ligands.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
19.
Abstract

We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5′G(syn)-G(anti)3′, and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

20.
We showed earlier that oligonucleotides 3'-d(GT)5-pO(CH2CH2O)3p-d(GT)5-3' form bimolecular quadruplexes with parallel orientation of their strands, which are held by guanine quartets alternating with unpaired thymines (GT quadruplex). This work deals with the conformational polymorphism and extensibility of G quadruplexes in complex with molecules of an intercalating agent ethidium bromide (EtBr). A cooperative mechanism of EtBr binding to the GT quadruplex was revealed. The binding constant K = (3.3 +/- 0.1) x 10(4) M-1, cooperativity coefficient omega = 2.5 +/- 0.2, and maximal amount of EtBr molecules intercalated in GT quadruplex (N = 8) were determined. It was proved experimentally by analysis of adsorption isotherms and theoretically by mathematical modeling that the GT quadruplex is capable of double extension, which is indicative of the high elasticity of this four-stranded helix. Two most stable conformations of GT quadruplexes with thymine residues intercalated and/or turned outside were found by mechanico-mathematical modeling. The equilibrium is shifted toward the conformation with the looped out thymine residues upon intercalation of EtBr molecules into the GT quadruplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号