首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Until recently, the RFX family of DNA binding proteins consisted exclusively of four mammalian members (RFX1-RFX4) characterized by a novel highly conserved DNA binding domain. Strong conservation of this DNA binding domain precluded a precise definition of the motif required for DNA binding. In addition, the biological systems in which these RFX proteins are implicated remained obscure. The recent identification of four new RFX genes has now shed light on the evolutionary conservation of the RFX family, contributed greatly to a detailed characterization of the RFX DNA binding motif, and provided clear evidence for the function of some of the RFX proteins. RFX proteins have been conserved throughout evolution in a wide variety of species, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, mouse and man. The characteristic RFX DNA binding motif has been recruited into otherwise very divergent regulatory factors functioning in a diverse spectrum of unrelated systems, including regulation of the mitotic cell cycle in fission yeast, the control of the immune response in mammals, and infection by human hepatitis B virus.  相似文献   

11.
12.
13.
14.
Receptor activator of NF-κB (RANK) activation by RANK ligand (RANKL) mediates osteoclastogenesis by recruiting TNF receptor-associated factors (TRAFs) via three cytoplasmic motifs (motif 1, PFQEP369–373; motif 2, PVQEET559–564; and motif 3, PVQEQG604–609) to activate the NF-κB and MAPK signaling pathways. RANK also has a TRAF-independent motif (IVVY535–538), which is dispensable for the activation of TRAF-induced signaling pathways but essential for osteoclast lineage commitment by inducing the expression of nuclear factor of activated T-cells c1 (NFATc1) to regulate osteoclast gene expression. Notably, TNF/IL-1-mediated osteoclastogenesis requires RANK ligand assistance, and the IVVY motif is also critical for TNF/IL-1-mediated osteoclastogenesis by rendering osteoclast genes responsive to these two cytokines. Here we show that the two types of RANK cytoplasmic motifs have to be on the same RANK molecule to mediate osteoclastogenesis, suggesting a functional cooperation between them. Subsequent osteoclastogenesis assays with TNF or IL-1 revealed that, although all three TRAF motifs play roles in TNF/IL-1-mediated osteoclastogenesis, motifs 2 and 3 are more potent than motif 1. Accordingly, inactivation of motifs 2 and 3 blocksTNF/IL-1-mediated osteoclastogenesis. Mechanistically, double mutation of motifs 2 and 3, similar to inactivation of the IVVY motif, abrogates the expression of nuclear factor of activated T-cells c1 and osteoclast genes in assays reflecting RANK-initiated and TNF/IL-1-mediated osteoclastogenesis. In contrast, double inactivation of motifs 2 and 3 did not affect the ability of RANK to activate the NF-κB and MAPK signaling pathways. Collectively, these results indicate that the RANK IVVY motif cooperates with the TRAF-binding motifs to promote osteoclastogenesis, which provides novel insights into the molecular mechanism of RANK signaling in osteoclastogenesis.  相似文献   

15.
16.
17.
18.
The RFX DNA binding domain is a novel motif that has been conserved in a growing number of dimeric DNA-binding proteins, having diverse regulatory functions, in eukaryotic organisms ranging from yeasts to humans. To characterize this novel motif, we have performed a detailed dissection of the site-specific DNA binding activity of RFX1, a prototypical member of the RFX family. First, we have performed a site selection procedure to define the consensus binding site of RFX1. Second, we have developed a new mutagenesis-selection procedure to derive a precise consensus motif, and to test the accuracy of a secondary structure prediction, for the RFX domain. Third, a modification of this procedure has allowed us to isolate altered-specificity RFX1 mutants. These results should facilitate the identification both of additional candidate genes controlled by RFX1 and of new members of the RFX family. Moreover, the altered-specificity RFX1 mutants represent valuable tools that will permit the function of RFX1 to be analyzed in vivo without interference from the ubiquitously expressed endogenous protein. Finally, the simplicity, efficiency, and versatility of the selection procedure we have developed make it of general value for the determination of consensus motifs, and for the isolation of mutants exhibiting altered functional properties, for large protein domains involved in protein-DNA as well as protein-protein interactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号