首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.  相似文献   

2.
Connections of the living human brain, on a macroscopic scale, can be mapped by a diffusion MR imaging based workflow. Since the same anatomic regions can be corresponded between distinct brains, one can compare the presence or the absence of the edges, connecting the very same two anatomic regions, among multiple cortices. Previously, we have constructed the consensus braingraphs on 1015 vertices first in five, then in 96 subjects in the Budapest Reference Connectome Server v1.0 and v2.0, respectively. Here we report the construction of the version 3.0 of the server, generating the common edges of the connectomes of variously parameterizable subsets of the 1015-vertex connectomes of 477 subjects of the Human Connectome Project’s 500-subject release. The consensus connectomes are downloadable in CSV and GraphML formats, and they are also visualized on the server’s page. The consensus connectomes of the server can be considered as the “average, healthy” human connectome since all of their connections are present in at least k subjects, where the default value of \(k=209\), but it can also be modified freely at the web server. The webserver is available at http://connectome.pitgroup.org.  相似文献   

3.
The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elegans) and to investigate their topological properties. Incorporating bilateral symmetry of the network as an important cue for proper cluster assignment, we identified anatomical clusters in the C. elegans connectome, including a body-spanning cluster, which correspond to experimentally identified functional circuits. Moreover, the hierarchical organization of the five clusters explains the systemic cooperation (e.g., mechanosensation, chemosensation, and navigation) that occurs among the structurally segregated biological circuits to produce higher-order complex behaviors.  相似文献   

4.
The Protein Structure Initiative:Biology-Materials Repository (PSI:Biology-MR; MR; ) sequence-verifies, annotates, stores, and distributes the protein expression plasmids and vectors created by the Protein Structure Initiative (PSI). The MR has developed an informatics and sample processing pipeline that manages this process for thousands of samples per month from nearly a dozen PSI centers. DNASU (), a freely searchable database, stores the plasmid annotations, which include the full-length sequence, vector information, and associated publications for over 130,000 plasmids created by our laboratory, by the PSI and other consortia, and by individual laboratories for distribution to researchers worldwide. Each plasmid links to external resources, including the PSI Structural Biology Knowledgebase (), which facilitates cross-referencing of a particular plasmid to additional protein annotations and experimental data. To expedite and simplify plasmid requests, the MR uses an expedited material transfer agreement (EP-MTA) network, where researchers from network institutions can order and receive PSI plasmids without institutional delays. As of March 2011, over 39,000 protein expression plasmids and 78 empty vectors from the PSI are available upon request from DNASU. Overall, the MR’s repository of expression-ready plasmids, its automated pipeline, and the rapid process for receiving and distributing these plasmids more effectively allows the research community to dissect the biological function of proteins whose structures have been studied by the PSI.  相似文献   

5.
Defining the structural and functional connectivity of the human brain (the human "connectome") is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connectivity in the newborn brain at any stage of development and to show how network properties can be derived in a clinical cohort of six-month old infants sustaining perinatal hypoxic ischemic encephalopathy (HIE). Two different anatomically unconstrained parcellation schemes were proposed and the resulting network metrics were correlated with neurological outcome at 6 months. Elimination and correction of unreliable data, automated parcellation of the cortical surface, and assembling the large-scale baby connectome allowed an unbiased study of the network properties of the newborn brain using graph theoretic analysis. In the application to infants with HIE, a trend to declining brain network integration and segregation was observed with increasing neuromotor deficit scores.  相似文献   

6.
The hippocampal formation is a key structure for memory function in the brain. The functional anatomy of the brain suggests that the hippocampus may be a convergence zone, as it receives polysensory input from distributed association areas throughout the neocortex. However, recent quantitative graph-theoretic analyses of the static large-scale connectome have failed to demonstrate the centrality of the hippocampus; in the context of the whole brain, the hippocampus is not among the most connected or reachable nodes. Here we show that when communication dynamics are taken into account, the hippocampus is a key hub in the connectome. Using a novel computational model, we demonstrate that large-scale brain network topology is organized to funnel and concentrate information flow in the hippocampus, supporting the long-standing hypothesis that this region acts as a critical convergence zone. Our results indicate that the functional capacity of the hippocampus is shaped by its embedding in the large-scale connectome.  相似文献   

7.

Rationale

Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we evaluated how these variables affect the reproducibility of the structural connectome.

Methods

Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner and a third time in a different scanner unit) within a short period of time. The scanning sessions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tractography was performed to assess link weight based on the number of fibers connecting gray matter regions of interest (ROI). Link weight and graph theory network measures were calculated and reproducibility was assessed through intra-class correlation coefficients, assuming each scanning session as a rater.

Results

Connectome reproducibility was higher with data from the same scanner. The probabilistic approach yielded larger reproducibility, while the individual variation in the number of tracked fibers from deterministic tractography was negatively associated with reproducibility. Links connecting larger and anatomically closer ROIs demonstrated higher reproducibility. In general, graph theory measures demonstrated high reproducibility across scanning sessions.

Discussion

Anatomical factors and tractography approaches can influence the reproducibility of the structural connectome and should be factored in the interpretation of future studies. Our results demonstrate that connectome mapping is a largely reproducible technique, particularly as it relates to the geometry of network architecture measured by graph theory methods.  相似文献   

8.
Yan C  He Y 《PloS one》2011,6(8):e23460
Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.  相似文献   

9.
PurposeThe unique treatment delivery technique provided by magnetic resonance guided radiotherapy (MRgRT) can represent a significant drawback when system fail occurs. This retrospective study proposes and evaluates a pipeline to completely automate the workflow necessary to shift a MRgRT treatment to a traditional radiotherapy linac.Material and methodsPatients undergoing treatment during the last MRgRT system failure were retrospectively included in this study. The core of the proposed pipeline was based on a tool able to mimic the original MR linac dose distribution. The so obtained dose distribution (AUTO) has been compared with the distribution obtained in the conventional radiotherapy linac (MAN). Plan comparison has been performed in terms of time required to obtain the final dose distribution, DVH parameters, dosimetric indices and visual analogue scales scoring by radiation oncologists.ResultsAUTO plans generation has been obtained within 10 min for all the considered cases. All AUTO plans were found to be within clinical tolerance, showing a mean target coverage variation of 1.7% with a maximum value of 4.3% and a minimum of 0.6% when compared with MAN plans. The highest OARs mean variation has been found for rectum V60 (6.7%). Dosimetric indices showed no relevant differences, with smaller gradient measure in favour of AUTO plans. Visual analogue scales scoring has confirmed comparable plan quality for AUTO plans.ConclusionThe proposed workflow allows a fast and accurate generation of automatic treatment plans. AUTO plans can be considered equivalent to MAN ones, with limited clinical impact in the worst-case scenario.  相似文献   

10.
Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical “small-world” architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical “small-world” architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.  相似文献   

11.
Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges.  相似文献   

12.
The most consistent cognitive sex differences have been found in the visuo-spatial domain, using Mental Rotation (MR) tasks. Such sex differences have been suggested to bear implications on our understanding of autism spectrum disorders (ASD). However, it is still debated how the sex difference in MR performance relates to differences between individuals with ASD compared to typically developed control persons (TD). To provide a detailed exploration of sex differences in MR performance, we studied rotational (indicated by slopes) and non-rotational aspects (indicated by intercepts) of the MR task in TD individuals (total N = 50). Second-to-fourth digit length ratios (2D:4D) were measured to investigate the associations between prenatal testosterone and performance on MR tasks. Handedness was assessed by the use of the Edinburgh Handedness Inventory in order to examine the relation between handedness and MR performance. In addition, we investigated the relation of spatial to systemising abilities, both of which have been associated with sex differences and with ASD, employing the Intuitive Physics Test (IPT). Results showed a male advantage in rotational aspects of the MR task, which correlated with IPT results. These findings are in contrast to the MR performance of individuals with ASD who have been shown to outperform TD persons in the non-rotational aspects of the MR task. These results suggest that the differences in MR performance due to ASD are different from sex-related differences in TD persons, in other words, ASD is not a simple and continuous extension of the male cognitive profile into the psychopathological range as the extreme male brain hypothesis (EMB) of ASD would suggest.  相似文献   

13.

Introduction

The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD).

Results

Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome.

Conclusion

These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders.  相似文献   

14.
The connectome, or the entire connectivity of a neural system represented by a network, ranges across various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether the connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of Caenorhabditis elegans and the fibre tract network of human brains obtained through diffusion spectrum imaging. We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of both C. elegans and human connectomes are higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution, and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in the C. elegans connectome or each region of interest in the human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared with the alternative arrangements. This implies that fewer genes are needed to encode for the organization of neural systems. While the first two findings show that the neural topologies are efficient in information processing, this suggests that they are also efficient from a developmental point of view. Together, these results show that neural systems are organized in such a way as to yield efficient features beyond those given by their modularity alone.  相似文献   

15.
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.  相似文献   

16.
Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the corpus callosum (CC) region. The results showed that the maximum displacement of the corpus callosum increase with an increase of interventional angle with respect to the midline. The maximum displacement of the corpus callosum for different interventional locations was predicted, which is related to the brain curvature and the distance between the interventional area and corpus callosum (CC). The estimated displacement magnitude of the CC region followed those obtained from clinical observations. The proposed method provided an automatic pipeline for generating realistic computational models for interventional surgery. Results also demonstrated the potential of constructing patient-specific models for image-guided, robotic neurological surgery.  相似文献   

17.
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.  相似文献   

18.
19.
The major histocompatibility complex (MHC) class I-related gene, MR1, is a non-classical MHC class IA gene and is encoded outside the MHC region. The MR1 is responsible for activation of mucosal-associated invariant T (MAIT) cells expressing semi-invariant T cell receptors in the presence of bacteria, but its ligand has not been identified. A unique characteristic of MR1 is its high evolutionary conservation of the α1 and α2 domains corresponding to the peptide-binding domains of classical MHC class I molecules, showing about 90 % amino acid identity between human and mouse. To clarify the evolutionary history of MR1 and identify more critically conserved residues for the function of MR1, we searched for the MR1 gene using jawed vertebrate genome databases and isolated the MR1 cDNA sequences of marsupials (opossum and wallaby). A comparative genomic analysis indicated that MR1 is only present in placental and marsupial mammals and that the gene organization around MR1 is well conserved among analyzed jawed vertebrates. Moreover, the α1 and α2 domains, especially in amino acid residues presumably shaping a ligand-binding groove, were also highly conserved between placental and marsupial MR1. These findings suggest that the MR1 gene might have been established at its present location in a common ancestor of placental and marsupial mammals and that the shape of the putative ligand-binding groove in MR1 has been maintained, probably for presenting highly conserved component(s) of microbes to MAIT cells.  相似文献   

20.
Mental retardation (MR) is a developmental brain disorder characterized by impaired cognitive performance and adaptive skills that affects 1–2% of the population. During the last decade, a large number of genes have been cloned that cause MR upon mutation in humans. The causal role of these genes provides an excellent starting point to investigate the cellular, neurobiological and behavioral alterations and mechanisms responsible for the cognitive impairment in mentally retarded persons. However, studies on Down syndrome (DS) reveal that overexpression of a cluster of genes and various forms of MR that are caused by single-gene mutations, such as fragile X (FraX), Rett, Coffin-Lowry, Rubinstein–Taybi syndrome and non-syndromic forms of MR, causes similar phenotypes. In spite of the many differences in the manifestation of these forms of MR, evidence converges on the proposal that MR is primarily due to deficiencies in neuronal network connectivity in the major cognitive centers in the brain, which secondarily results in impaired information processing. Although MR has been largely regarded as a brain disorder that cannot be cured, our increased understanding of the abnormalities and mechanisms underlying MR may provide an avenue for the development of therapies for MR. In this review, we discuss the neurobiology underlying MR, with a focus on FraX and DS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号