首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen VI has a ubiquitous distribution throughout connective tissues, and has key roles in linking cells and matrix macromolecules. We have generated three-dimensional reconstructions of collagen VI microfibrils using automated electron tomography (AET) in order to obtain new insights into the organisation of collagen VI in assembled microfibrils. Analysis of the reconstruction data has allowed the resolution of the double-beaded structure into smaller subunits. Volume calculations from the tomography data indicate that ten and six A-domains could be packed into the N and C-terminal regions from each monomer, respectively. A putative location for the globular N-terminal regions of the alpha3 chain, important for microfibril assembly and function, has been identified. Some surfaces of the alpha3 chain N-terminal domains appear to be exposed on the surface of a microfibril, where they may provide an interactive surface for molecules. Analysis of the interbead region provides evidence for complex triple helical supercoiling in microfibrils. Frequently, two strands were visualised emerging from the beaded region and merging into a single interbead region. Measurements taken from the AET data show that there is a decrease in periodicity from dimer/tetramer to microfibrils. Molecular combing reverses this effect by mechanically increasing periodicity to give measurements similar to the component dimers/tetramers. Together, these data have provided important new insights into the organisation and function of these large macromolecular assemblies.  相似文献   

2.
Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation.  相似文献   

3.
Collagen VI assembly is unique within the collagen superfamily in that the alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains associate intracellularly to form triple helical monomers, and then dimers and tetramers, which are secreted from the cell. Secreted tetramers associate end-to-end to form the distinctive extracellular microfibrils that are found in virtually all connective tissues. Although the precise protein interactions involved in this process are unknown, the N-terminal globular regions, which are composed of multiple copies of von Willebrand factor type A-like domains, are likely to play a critical role in microfibril formation, because they are exposed at both ends of the tetramers. To explore the role of these subdomains in collagen VI intracellular and extracellular assembly, alpha 3(VI) cDNA expression constructs with sequential N-terminal deletions were stably transfected into SaOS-2 cells, producing cell lines that express alpha 3(VI) chains with N-terminal globular domains containing modules N9-N1, N6-N1, N5-N1, N4-N1, N3-N1, or N1, as well as the complete triple helix and C-terminal globular domain (C1-C5). All of these transfected alpha 3(VI) chains were able to associate with endogenous alpha 1(VI) and alpha 2(VI) to form collagen VI monomers, dimers, and tetramers, which were secreted. Importantly, cells that expressed alpha 3(VI) chains containing the N5 subdomain, alpha 3(VI) N9-C5, N6-C5, and N5-C5, formed microfibrils and deposited a collagen VI matrix. In contrast, cells that expressed the shorter alpha 3(VI) chains, N4-C5, N3-C5, and N1-C5, were severely compromised in their ability to form end-to-end tetramer assemblies and failed to deposit a collagen VI matrix. These data demonstrate that the alpha 3(VI) N5 module is critical for microfibril formation, thus identifying a functional role for a specific type A subdomain in collagen VI assembly.  相似文献   

4.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

5.
Collagen monomers, oligomers, and fibrillar structures were isolated from chick tendons at various stages of development and studied by rotary shadowing. Monomers of Type I collagen, solubilized in 0.15 M NaCl solutions, were mostly present as collagen, pN-collagen, and pC-collagen with few procollagen molecules. They did not form polymers, nor were they associated with a carrier. Dimers of fibrillar collagen molecules were arranged in a 4-D stagger, suggesting that this was the preferred molecular interaction for the initiation of collagen fibrillogenesis. Type XII collagen molecules were mostly free, but some were attached by their central globular domain to one end of free fibrillar collagen molecules. Tenascin and Type VI collagen were also identified. The fibril populations consisted of collagen and beaded structures. These fibrils consisted of beads (globular domains) about 23 nm in diameter, separated by a period about 27 nm in length. Beads were linked by filamentous structures. These beaded fibrils probably represent the microfibrils of elastin.  相似文献   

6.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

7.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

8.
Collagen VI and WARP are extracellular structural macromolecules present in cartilage and associated with BM suprastructures in non-skeletal tissues. We have previously shown that in WARP-deficient mice, collagen VI is specifically reduced in regions of the peripheral nerve ECM where WARP is expressed, suggesting that both macromolecules are part of the same suprastructure. The object of this study was to conduct a detailed analysis of WARP-collagen VI interactions in vitro in cartilage, a tissue rich in WARP and collagen VI. Immunohistochemical analysis of mouse and human articular cartilage showed that WARP and collagen VI co-localize in the pericellular matrix of superficial zone articular chondrocytes. EM analysis on extracts of human articular cartilage showed that WARP associates closely with collagen VI-containing suprastructures. Additional evidence of an interaction is provided by immunogold EM and immunoblot analysis showing that WARP was present in collagen VI-containing networks isolated from cartilage. Further characterization were done by solid phase binding studies and reconstitution experiments using purified recombinant WARP and isolated collagen VI. Collagen VI binds to WARP with an apparent Kd of approximately 22 nM and the binding site(s) for WARP resides within the triple helical domain since WARP binds to both intact collagen VI tetramers and pepsinized collagen VI. Together, these data confirm and extend our previous findings by demonstrating that WARP and collagen VI form high affinity associations in vivo in cartilage. We conclude that WARP is ideally placed to function as an adapter protein in the cartilage pericellular matrix.  相似文献   

9.
Amino acid sequences of human collagen alpha 1(VI) and alpha 2(VI) chains were completed by cDNA sequencing and Edman degradation demonstrating that the mature polypeptides contain 1009 and 998 amino acid residues respectively. In addition, they contain small signal peptide sequences. Both chains show 31% identity in the N-terminal (approximately 235 residues) and C-terminal (approximately 430 residues) globular domains which are connected by a triple helical segment (335-336 residues). Internal alignment of the globular sequences indicates a repetitive 200-residue structure (15-23% identity) occurring three times (N1, C1, C2) in each chain. These repeating subdomains are connected to each other and to the triple helix by short (15-30 residues) cysteine-rich segments. The globular domains possess several N-glycosylation sites but no cell-binding RGD sequences, which are exclusively found in the triple helical segment. Sequencing of alpha 2(VI) cDNA clones revealed two variant chains with a distinct C2 subdomain and 3' non-coding region. The repetitive segments C1, C2 and, to a lesser extent, N1 show significant identity (15-18%) to the collagen-binding A domains of von Willebrand factor (vWF) and they are also similar to some integrin receptors, complement components and a cartilage matrix protein. Since the globular domains of collagen VI come into close contact with triple helical segments during the formation of tissue microfibrils it suggests that the globular domains bind to collagenous structures in a manner similar to the binding of vWF to collagen I.  相似文献   

10.
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.  相似文献   

11.
12.
Transforming growth factor-beta induced gene-h3 (betaig-h3) was found to co-purify with collagen VI microfibrils, extracted from developing fetal ligament, after equilibrium density gradient centrifugation under both nondenaturing and denaturing conditions. Analysis of the collagen VI fraction from the non-denaturing gradient by gel electrophoresis under non-reducing conditions revealed the present of a single high molecular weight band that immunostained for both collagen VI and betaig-h3. When the fraction was analyzed under reducing conditions, collagen VI alpha chains and betaig-h3 were the only species evident. The results indicated that betaig-h3 is associated with collagen VI in tissues by reducible covalent bonding, presumably disulfide bridges. Rotary shadowing and immunogold staining of the collagen VI microfibrils and isolated tetramers indicated that betaig-h3 was specifically and periodically associated with the double-beaded region of many of the microfibrils and that this covalent binding site was located in or near the amino-terminal globular domain of the collagen VI molecule. Using solid phase and co-immunoprecipitation assays, recombinant betaig-h3 was found to bind both native and pepsin-treated collagen VI but not individual pepsin-collagen VI alpha chains. Blocking experiments indicated that the major in vitro betaig-h3 binding site was located in the pepsin-resistant region of collagen VI. In contrast to the tissue situation, the in vitro interaction had the characteristics of a reversible non-covalent interaction, and the Kd was measured as 1.63 x 10(-8) m. Rotary shadowing of immunogold-labeled complexes of recombinant betaig-h3 and pepsin-collagen VI indicated that the in vitro betaig-h3 binding site was located close to the amino-terminal end of the collagen VI triple helix. The evidence indicates that collagen VI may contain distinct covalent and non-covalent binding sites for betaig-h3, although the possibility that both interactions use the same binding region is discussed. Overall the study supports the concept that betaig-h3 is extensively associated with collagen VI in some tissues and that it plays an important modulating role in collagen VI microfibril function.  相似文献   

13.
The pericellular fibronectin-containing matrices of human foreskin fibroblasts cultured in ascorbate-supplemented medium were examined using surface replicas. An extensive filamentous network is present over and between adjacent cells, with a considerable amount at points of cell-to-cell contact. Indirect immunocytochemical localization of the distribution of fibronectin and procollagen type III within the matrix was done using the peroxidase-antiperoxidase (PAP) sandwich technique. The PAP molecule with the surrounding diaminobenzidine reaction product appears as a globular particle of approximately 39 nm in surface replicas. The apparent size of the marker was larger (60-80 nm) when bound to pericellular fibronectin, due presumably to the binding of more than one PAP complex to each fibronectin molecule. The immunocytochemical data suggest that fibronectin is a component of most, if not all, matrix fibrils. Some of the smallest filaments of the matrix (5-10 nm) exhibit a periodic, beaded appearance, with a repeat distance of approximately 70-100 nm. After either anti-fibronectin or anti-procollagen type III labeling, the filaments were decorated at regular 70-100 nm intervals with the globular marker. We suggest that the periodicity may be due to fibronectin molecules bound to collagen microfibrils at regular intervals. Our results demonstrate the usefulness of combined surface replica and immunocytochemical techniques for analysis of matrix components of cultured cells.  相似文献   

14.
Immunochemistry, genuine size and tissue localization of collagen VI   总被引:19,自引:0,他引:19  
Collagen VI was solubilized with pepsin from human placenta and used for preparing rabbit antisera. Major antigenic determinants were located in the central region of the antigen including triple-helical and globular structures. Antisera prepared against a constituent-chain showed preferential reactions with unfolded structures. Antibodies were purified by affinity chromatography and failed to cross-react with other collagen types I-V and with fibronectin. These antibodies demonstrated intracellular and extracellular collagen VI in fibroblast and smooth muscle cell cultures. Immunoblotting identified a disulfide-bonded constituent chain about twice as large as those of the pepsin fragments in both cell cultures and tissue extracts. Rotary shadowing electron microscopy indicated that the increase in mass is due to larger globular domains present at both ends of collagen VI monomers. Indirect immunofluorescence demonstrated a wide occurrence of collagen VI in connective tissue particularly of large vessels, kidney, skin, liver and muscle. Collagen VI is apparently not a typical constituent of cartilage or of basement membranes. Ultrastructural studies using the immunoferritin technique showed collagen VI along thin filaments or in amorphous regions of aortic media or placenta but not in association with thick, cross-striated collagen fibrils or elastin. This supports previous suggestions that collagen VI is a constituent of microfibrillar structures of the body.  相似文献   

15.
Collagen VI is a heterotrimer composed of three α chains (α1, α2, α3) widely expressed throughout various interstitial matrices. Collagen VI is also found near the basement membranes of many tissues where it serves as an anchoring meshwork. The aim of this study was to investigate the distribution and role of collagen VI at the epithelial-stromal interface in the intestine. Results showed that collagen VI is a bona fide epithelial basal lamina component and constitutes the major collagen type of epithelial origin in this organ. In vitro, collagen VI co-distributes with fibronectin. Targeted knockdown of collagen VI expression in intestinal epithelial cells was used to investigate its function. Depletion of collagen VI from the matrix led to a significant increase in cell spreading and fibrillar adhesion formation coinciding with an upregulation of fibronectin expression, deposition and organization as well as activation of myosin light chain phosphorylation by the myosin light chain kinase and Rho kinase dependent mechanisms. Plating cells deficient for collagen VI on collagen VI rescued the phenotype. Taken together, these data demonstrate that collagen VI is an important basal lamina component involved in the regulation of epithelial cell behavior most notably as a regulator of epithelial cell-fibronectin interactions.  相似文献   

16.
We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.  相似文献   

17.
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the dominantly inherited disorder, Bethlem myopathy. Glycine mutations that interrupt the Gly-X-Y repetitive amino acid sequence that forms the characteristic collagen triple helix have been defined in four families; however, the effects of these mutations on collagen VI biosynthesis, assembly, and structure have not been determined. In this study, we examined the consequences of Bethlem myopathy triple helical glycine mutations in the alpha1(VI) and alpha2(VI) chains, as well as engineered alpha3(VI) triple helical glycine mutations. Although the Bethlem myopathy and introduced mutations that are toward the N terminus of the triple helix did not measurably affect collagen VI intracellular monomer, dimer, or tetramer assembly, or secretion, the introduced mutation toward the C terminus of the helix severely impaired association of the mutant alpha3(VI) chain with alpha1(VI) and alpha2(VI). Association of the three chains was not completely prevented, however; and some non-disulfide bonded tetramers were secreted. Examination of the secreted Bethlem myopathy and engineered mutant collagen VI by negative staining electron microscopy revealed the striking finding that in all the cell lines a significant proportion of the tetramers contained a kink in the supercoiled triple helical region. Collagen VI tetramers from all of the mutant cell lines also showed a reduced ability to form microfibrils. These results provide the first evidence of the biosynthetic consequences of collagen VI triple helical glycine mutations and indicate that Bethlem myopathy results not only from the synthesis of reduced amounts of structurally normal protein but also from the presence of mutant collagen VI in the extracellular matrix.  相似文献   

18.
We recently reported a severe deficiency in collagen type VI, resulting from recessive mutations of the COL6A2 gene, in patients with Ullrich congenital muscular dystrophy. Their parents, who are all carriers of one mutant allele, are unaffected, although heterozygous mutations in collagen VI caused Bethlem myopathy. Here we investigated the consequences of three COL6A2 mutations in fibroblasts from patients and their parents in two Ullrich families. All three mutations lead to nonsense-mediated mRNA decay. However, very low levels of undegraded mutant mRNA remained in patient B with compound heterozygous mutations at the distal part of the triple-helical domain, resulting in deposition of abnormal microfibrils that cannot form extensive networks. This observation suggests that the C-terminal globular domain is not essential for triple-helix formation but is critical for microfibrillar assembly. In all parents, the COL6A2 mRNA levels are reduced to 57-73% of the control, but long term collagen VI matrix depositions are comparable with that of the control. The almost complete absence of abnormal protein and near-normal accumulation of microfibrils in the parents may account for their lack of myopathic symptoms.  相似文献   

19.
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders.  相似文献   

20.
Collagen VI is an extracellular protein that most often contains the three genetically distinct polypeptide chains, α1(VI), α2(VI), and α3(VI), although three recently identified chains, α4(VI), α5(VI), and α6(VI), may replace α3(VI) in some situations. Each chain has a triple helix flanked by N- and C-terminal globular domains that share homology with the von Willebrand factor type A (VWA) domains. During biosynthesis, the three chains come together to form triple helical monomers, which then assemble into dimers and tetramers. Tetramers are secreted from the cell and align end-to-end to form microfibrils. The precise molecular mechanisms responsible for assembly are unclear. Mutations in the three collagen VI genes can disrupt collagen VI biosynthesis and matrix organization and are the cause of the inherited disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. We have identified a Ullrich congenital muscular dystrophy patient with compound heterozygous mutations in α2(VI). The first mutation causes skipping of exon 24, and the mRNA is degraded by nonsense-mediated decay. The second mutation is a two-amino acid deletion in the C1 VWA domain. Recombinant C1 domains containing the deletion are insoluble and retained intracellularly, indicating that the mutation has detrimental effects on domain folding and structure. Despite this, mutant α2(VI) chains retain the ability to associate into monomers, dimers, and tetramers. However, we show that secreted mutant tetramers containing structurally abnormal C1 VWA domains are unable to associate further into microfibrils, directly demonstrating the critical importance of a correctly folded α2(VI) C1 domain in microfibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号