首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MKP-2 is a member of the mitogen-activated protein (MAP) kinase phosphatase family which has been suggested to play an important role in the feedback control of MAP kinase-mediated gene expression. Although MKP-2 preferentially inactivates extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) MAP kinase subfamilies, the mechanisms underlying its own regulation remain unclear. In this report, we have examined the MKP-2 interaction with and catalytic activation by distinct MAP kinase subfamilies. We found that the catalytic activity of MKP-2 was enhanced dramatically by ERK and JNK but was affected only minimally by p38. By contrast, p38 and ERK bound MKP-2 with comparably strong affinities, whereas JNK and MKP-2 interacted very weakly. Through site-directed mutagenesis, we defined the ERK/p38-binding site as a cluster of arginine residues in the NH(2)-terminal domain of MKP-2. Mutation of the basic motif abrogated its interaction with both ERK and p38 and severely compromised the catalytic activation of MKP-2 by these kinases. Unexpectedly, such mutations had little effect on JNK-triggered catalytic activation. Both in vitro and in vivo, wild type MKP-2 effectively inactivated ERK2 whereas MKP-2 mutants incapable of binding to ERK/p38 did not. Finally, in addition to its role as a docking site for ERK and p38, the MKP-2 basic motif plays a role in regulating its nuclear localization. Our studies provided a mechanistic explanation for the substrate preference of MKP-2 and suggest that catalytic activation of MKP-2 upon binding to its substrates is crucial for its function.  相似文献   

2.
We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK > p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK.  相似文献   

3.
MAP Kinase Phosphatase-2 (MKP-2) is a dual specific nuclear phosphatase which is selective for both ERK and JNK, MAP kinases implicated in the regulation of apoptosis in response to genotoxic stress. Here we report the conditional expression of MKP-2 in human embryonic kidney cells 293. We demonstrate that Flag-WT-MKP-2 is able to rescue cells from apoptotic commitment when subjected to UV-C or cisplatin treatment. We establish that upon stimulation all three major MAP kinase families (ERK, JNK and p38 MAP kinases) are activated. However, MKP-2 is surprisingly only able to deactivate JNK in vivo. Furthermore, whilst pre-treatment of cells with either the JNK inhibitor SP600125, or the MEK-1 inhibitor PD98059, also reverses UV-C and cisplatin-induced apoptosis, the anti-apoptotic effect of MKP-2 overexpression is not additive with SP600125 but is with PD098059, suggesting that MKP-2 is involved in specifically terminating JNK activity and not ERK. The inability of MKP-2 to dephosphorylate ERK in vivo is also not due to the inability of Flag-MKP-2 to bind both ERK and JNK; phosphorylated forms of each kinase are co-precipitated with both WT and CI-MKP-2. Immunofluorescence studies however demonstrate that ERK is exclusively cytosolic in origin and not translocated to the nucleus following UV-C and cisplatin treatment whilst JNK is principally nuclear. These studies demonstrate the in vivo specificity of MKP-2 for JNK and not ERK and show that nuclear-targeted JNK is involved in genotoxic stress-induced apoptosis.  相似文献   

4.
Steroid-induced osteoporosis is a common side effect of long-term treatment with glucocorticoid (GC) drugs. GCs have multiple systemic effects that may influence bone metabolism but also directly affect osteoblasts by decreasing proliferation. This may be beneficial at low concentrations, enhancing differentiation. However, high-dose treatment produces a severe deficit in the proliferative osteoblastic compartment. We provide causal evidence that this effect of GC is mediated by induction of the dual-specificity MAPK phosphatase, MKP-1/DUSP1. Excessive MKP-1 production is both necessary and sufficient to account for the impaired osteoblastic response to mitogens. Overexpression of MKP-1 after either GC treatment or transfection ablates the mitogenic response in osteoblasts. Knockdown of MKP-1 using either immunodepletion of MKP-1 before in vitro dephosphorylation assay or short interference RNA transfection prevents inactivation of ERK by GCs. Neither c-jun N-terminal kinase nor p38 MAPK is activated by the mitogenic cocktail in 20% fetal calf serum, but their activation by a DNA-damaging agent (UV irradiation) was inhibited by either GC treatment or overexpression of MKP-1, indicating regulation of all three MAPKs by MKP-1 in osteoblasts. However, an inhibitor of the MAPK/ERK kinase-ERK pathway inhibited osteoblast proliferation whereas inhibitors of c-jun N-terminal kinase or p38 MAPK had no effect, suggesting that ERK is the MAPK that controls osteoblast proliferation. Regulation of ERK by MKP-1 provides a novel mechanism for control of osteoblast proliferation by GCs.  相似文献   

5.
Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases. This reflects tight and specific binding between ERK and the MKP-3 amino terminus with consequent phosphatase activation and dephosphorylation of the bound MAP kinase. We have used a series of p38/ERK chimeric molecules to identify domains within ERK necessary for binding and catalytic activation of MKP-3. These studies demonstrate that ERK kinase subdomains V-XI are necessary and sufficient for binding and catalytic activation of MKP-3. These domains constitute the major COOH-terminal structural lobe of ERK. p38/ERK chimeras possessing these regions display increased sensitivity to inactivation by MKP-3. These data also reveal an overlap between ERK domains interacting with MKP-3 and those known to confer substrate specificity on the ERK MAP kinase. Consistent with this, we show that peptides representing docking sites within the target substrates Elk-1 and p90(rsk) inhibit ERK-dependent activation of MKP-3. In addition, abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH(2) terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the DSP gene family.  相似文献   

6.
7.
In this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2(+/+) but not from MKP-2(-/-) mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2(-/-) macrophages whilst ERK phosphorylation was unaffected. MKP-2 deletion also potentiated LPS-stimulated induction of the inflammatory cytokines, IL-6, IL-12p40, TNF-α, and also COX-2 derived PGE(2) production. However surprisingly, in MKP-2(-/-) macrophages, there was a marked reduction in LPS or IFNγ-induced iNOS and nitric oxide release and enhanced basal expression of arginase-1, suggesting that MKP-2 may have an additional regulatory function significant in pathogen-mediated immunity. Indeed, following infection with the intracellular parasite Leishmania mexicana, MKP-2(-/-) mice displayed increased lesion size and parasite burden, and a significantly modified Th1/Th2 bias compared with wild-type counterparts. However, there was no intrinsic defect in MKP-2(-/-) T cell function as measured by anti-CD3 induced IFN-γ production. Rather, MKP-2(-/-) bone marrow-derived macrophages were found to be inherently more susceptible to infection with Leishmania mexicana, an effect reversed following treatment with the arginase inhibitor nor-NOHA. These findings show for the first time a role for MKP-2 in vivo and demonstrate that MKP-2 may be essential in orchestrating protection against intracellular infection at the level of the macrophage.  相似文献   

8.
9.
To elucidate the physiological role(s) of DUSP9 (dual-specificity phosphatase 9), also known as MKP-4 (mitogen-activated protein kinase [MAPK] phosphatase 4), the gene was deleted in mice. Crossing male chimeras with wild-type females resulted in heterozygous (DUSP9(+/-)) females. However, when these animals were crossed with wild-type (DUSP9(+/y)) males none of the progeny carried the targeted DUSP9 allele, indicating that both female heterozygous and male null (DUSP9(-/y)) animals die in utero. The DUSP9 gene is on the X chromosome, and this pattern of embryonic lethality is consistent with the selective inactivation of the paternal X chromosome in the extraembryonic tissues of the mouse, suggesting that DUSP9/MKP4 performs an essential function during placental development. Examination of embryos between 8 and 10.5 days postcoitum confirmed that lethality was due to a failure of labyrinth development, and this correlates exactly with the normal expression pattern of DUSP9/MKP-4 in the trophoblast giant cells and labyrinth of the placenta. Finally, when the placental defect was rescued, male null (DUSP9(-/y)) embryos developed to term, appeared normal, and were fertile. Our results indicate that DUSP9/MKP-4 is essential for placental organogenesis but is otherwise dispensable for mammalian embryonic development and highlights the critical role of dual-specificity MAPK phosphatases in the regulation of developmental outcomes in vertebrates.  相似文献   

10.
Heat shock (HS) activates mitogen-activated protein (MAP) kinases. Although prior exposure to nonlethal HS makes cells refractory to the lethal effect of a subsequent HS, it is unclear whether this also occurs in MAP kinase activation. This study was undertaken to evaluate the effect of a heat pretreatment on MAP kinase activation by a subsequent HS and to elucidate its possible mechanism. Preheating did not make BEAS-2B cells refractory to extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) activation by a second HS but accelerated their inactivation after HS. The rapid inactivation of ERK and JNK was dependent on de novo protein synthesis and associated with the up-regulation of heat shock protein 70 (HSP70). Moreover, the inhibition of phosphatase activity reversed this rapid inactivation. MAP kinase phosphatase-1 (MKP-1) expression was increased by HS, and the presence of its phosphorylated form (p-MKP-1) correlated with the observed rapid ERK and JNK inactivation. Blocking induction of p-MKP-1 with antisense MKP-1 oligonucleotides suppressed the rapid inactivation of ERK and JNK in preheated cells. HSP70 overexpression caused the early phosphorylation of MKP-1. Moreover, MKP-1 phosphorylation and the rapid inactivation of ERK were inhibited by blocking HSP70 induction in preheated cells. In addition, MKP-1 was insolubilized by HS, and HSP70 associated physically with MKP-1, suggesting that a chaperone effect of HSP70 might have caused the early phosphorylation of MKP-1. These results indicate that preheating accelerated MAP kinase inactivation after a second HS and that this is related to a HSP70-mediated increase in p-MKP-1.  相似文献   

11.
12.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   

13.
14.
15.
16.
17.
18.
Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser(231) residue, located within the KIM. Upon phosphorylation of Ser(231), PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal-regulated kinase (ERK)1/2 and p38alpha were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Calpha catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38alpha by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.  相似文献   

19.
20.
cAMP-dependent protein kinase (PKA) has been suggested to interfere with T-cell activation by inhibiting interleukin (IL-2) receptor alpha-chain (CD25) expression and IL-2 production. The Ras/MAP kinase pathway has been found to be necessary for induction of the IL-2 production. In this study, we have scrutinized the Ras/MAP kinase pathway in Jurkat T-cells to attempt to identify any sites for PKA-mediated regulatory phosphorylations. Here we unambiguously demonstrate that PKA directly inhibits anti-CD3-induced MAP kinase activation. In vitro phosphorylation experiments showed that Raf-1 was extensively phosphorylated by PKA, while ERK2 and MEK were not. Phosphopeptide mapping identified Ser-43 of Raf-1 as the only site phosphorylated by PKA in the Ras/MAPK pathway. Transient transfection experiments demonstrated that mutations of Ser-43 of the Raf-1 kinase were rendered insensitive to cAMP-mediated inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号