首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
《Journal of molecular biology》2019,431(9):1711-1728
Myotonic dystrophy type 1 is an autosomal-dominant inherited disorder caused by the expansion of CTG repeats in the 3′ untranslated region of the DMPK gene. The RNAs bearing these expanded repeats have a range of toxic effects. Here we provide evidence from a Caenorhabditis elegans myotonic dystrophy type 1 model that the RNA interference (RNAi) machinery plays a key role in causing RNA toxicity and disease phenotypes. We show that the expanded repeats systematically affect a range of endogenous genes bearing short non-pathogenic repeats and that this mechanism is dependent on the small RNA pathway. Conversely, by perturbating the RNA interference machinery, we reversed the RNA toxicity effect and reduced the disease pathogenesis. Our results unveil a role for RNA repeats as templates (based on sequence homology) for moderate but constant gene silencing. Such a silencing effect affects the cell steady state over time, with diverse impacts depending on tissue, developmental stage, and the type of repeat. Importantly, such a mechanism may be common among repeats and similar in human cells with different expanded repeat diseases.  相似文献   

7.
8.
Myotonic dystrophy (DM) is genetically characterized by abnormal expansion of an unstable CTG trinucleotide repeat, located in the 3′-untranslated region of mRNA encoding the family of serine-threonine protein kinases. DNA extracted from various organs of patients with DM was analyzed by the Southern blotting method. We identified differently expanded bands in DNAs from various tissues from patients with DM. In studying the length of the CTG repeat in different regions of the brain, we found a noticeably small increase in repeat length in the cerebellum compared with other tissues. While this phenomenon has been reported in other triplet repeat diseases such as Huntington disease, spinocerebellar ataxia type 1, and dentatorubral-pallidoluysian atrophy, we are the first to describe it in DM. Although the mechanism of expansion of the triplet repeat remains to be defined, the tissue-dependent somatic mosaicism suggests that its occurrence may depend on the differentiated state of each tissue. Received: 18 October 1995 / Revised: 20 March 1996  相似文献   

9.
10.
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats.  相似文献   

11.
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.  相似文献   

12.
In gene therapy of dominantly inherited diseases with small interfering RNA (siRNA), mutant allele specific suppression may be necessary for diseases in which the defective gene normally has an important role. It is difficult, however, to design a mutant allele-specific siRNA for trinucleotide repeat diseases in which the difference of sequences is only repeat length. To overcome this problem, we use a new RNA interference (RNAi) strategy for selective suppression of mutant alleles. Both mutant and wild-type alleles are inhibited by the most effective siRNA, and wild-type protein is restored using the wild-type mRNA modified to be resistant to the siRNA. Here, we applied this method to spinocerebellar ataxia type 6 (SCA6). We discuss its feasibility and problems for future gene therapy.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Friedreich's ataxia is caused by mutations in the FRDA gene that encodes frataxin, a nuclear-encoded mitochondrial protein. Most patients are homozygous for the expansion of a GAA triplet repeat within the FRDA gene, but a few patients show compound heterozygosity for a point mutation and the GAA-repeat expansion. We analyzed DNA samples from a cohort of 241 patients with autosomal recessive or isolated spinocerebellar ataxia for the GAA triplet expansion. Patients heterozygous for the GAA expansion were screened for point mutations within the FRDA coding region. Molecular analyses included the single-strand conformation polymorphism analysis, direct sequencing, and linkage analysis with FRDA locus flanking markers. Seven compound heterozygous patients were identified. In four patients, a point mutation that predicts a truncated frataxin was detected. Three of them associated classic early-onset Friedreich's ataxia with an expanded GAA allele greater than 800 repeats. The other patient associated late-onset disease at the age of 29 years with a 350-GAA repeat expansion. In two patients manifesting the classical phenotype, no changes were observed by single-strand conformation polymorphism (SSCP) analysis. Linkage analysis in a family with two children affected by an ataxic syndrome, one of them showing heterozygosity for the GAA expansion, confirmed no linkage to the FRDA locus. Most point mutations in compound heterozygous Friedreich's ataxia patients are null mutations. In the present patients, clinical phenotype seems to be related to the GAA repeat number in the expanded allele. Complete molecular definition in these patients is required for clinical diagnosis and genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号