共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is a tribute to the scientific accomplishments of Ernst Chain and the influence he exerted over the fields of industrial microbiology and biotechnology. Chain is the father of the modern antibiotic era and all the benefits that these therapeutic agents have brought, i.e., longer life spans, greater levels of public health, widespread modern surgery, and control of debilitating infectious diseases, including tuberculosis, gonorrhea, syphilis, etc. Penicillin was the first antibiotic to become commercially available, and its use ushered in the age of antibiotics. The discovery of penicillin’s bactericidal action had been made by Alexander Fleming in London in 1928. After publishing his observations in 1929, no further progress was made until the work was picked up in 1939 by scientists at Oxford University. The group was headed by Howard Florey, and Chain was the group’s lead scientist. Chain was born and educated in Germany, and he fled in 1933 as a Jewish refugee from Nazism to England. Other important members of the Oxford research team were Norman Heatley and Edward Abraham. The team was able to produce and isolate penicillin under conditions of scarce resources and many technical challenges. Sufficient material was collected and tested on mice to successfully demonstrate penicillin’s bactericidal action on pathogens, while being nontoxic to mammals. Chain directed the microbiological methods for producing penicillin and the chemical engineering methods to extract the material. This technology was transferred to US government facilities in 1941 for commercial production of penicillin, becoming an important element in the Allied war effort. In 1945, the Nobel Prize for medicine was shared by Fleming, Florey, and Chain in recognition of their work in developing penicillin as a therapeutic agent. After World War II, Chain tried to persuade the British government to fund a new national antibiotic industry with both research and production facilities. As resources were scarce in postwar Britain, the British government declined the project. Chain then took a post in 1948 at Rome’s Instituto Superiore di Sanitá, establishing a new biochemistry department with a pilot plant. During that period, his department developed important new antibiotics (including the first semisynthetic antibiotics) as well as improved technological processes to produce a wide variety of important microbial metabolites that are still in wide use today. Chain was also responsible for helping several countries to start up a modern penicillin industry following World War II, including the Soviet Union and the People’s Republic of China. In 1964, Chain returned to England to establish a new biochemistry department and industrial scale fermentation pilot plant at Imperial College in London. Imperial College became the preeminent biochemical department in Europe. Chain was also a pioneer in changing the relationship between government, private universities, and private industry for collaboration and funding to support medical research. Ernst Chain has left a lasting impact as a great scientist and internationalist. 相似文献
2.
Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists’ science or as a farmers’ science. 相似文献
4.
A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering. 相似文献
14.
Behavioral ecologists argue that evolution drives animal behavior to efficiently solve the problems animals face in their environmental niches. The ultimate evolutionary causes of decision making, they contend, can be found in economic analyses of organisms and their environments. Neurobiologists interested in how animals make decisions have, in contrast, focused their efforts on understanding the neurobiological hardware that serves as a more proximal cause of that same behavior. Describing the flow of information within the nervous system without regard to these larger goals has been their focus. Recent work in a number of laboratories has begun to suggest that these two approaches are beginning to fuse. It may soon be possible to view the nervous system as a representational process that solves the mathematically defined economic problems animals face by making efficient decisions. These developments in the neurobiological theory of choice, and the new schema they imply, form the subject of this article. 相似文献
17.
Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science—and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. 相似文献
18.
BackgroundAccurate information on the prevalence and causes of musculoskeletal impairment (MSI) is lacking in low income countries. We present a new survey methodology that is based on sound epidemiological principles and is linked to the World Health Organisation''s International Classification of Functioning. MethodsClusters were selected with probability proportionate to size. Households were selected within clusters through compact segment sampling. 105 clusters of 80 people (all ages) were included. All participants were screened for MSI by a physiotherapist and medical assistant. Possible cases plus a random sample of 10% of non-MSI cases were examined further to ascertain diagnosis, aetiology, quality of life, and treatment needs. Findings6757 of 8368 enumerated individuals (80.8%) were screened. There were 352 cases, giving an overall prevalence for MSI of 5.2%. (95% CI 4.5–5.9) The prevalence of MSI increased with age and was similar in men and women. Extrapolating these estimates, there are approximately 488,000 MSI diagnoses in Rwanda. Only 8.2% of MSI cases were severe, while the majority were moderate (43.7%) or mild (46.3%). Diagnostic categories comprised 11.5% congenital, 31.3% trauma, 3.8% infection, 9.0% neurological, and 44.4% non-traumatic non infective acquired. The most common individual diagnoses were joint disease (13.3%), angular limb deformity (9.7%) and fracture mal- and non-union (7.2%). 96% of all cases required further treatment. InterpretationThis survey demonstrates a large burden of MSI in Rwanda, which is mostly untreated. The survey methodology will be useful in other low income countries, to assist with planning services and monitoring trends. 相似文献
19.
By Niels Lynnerup. Copenhagen: Commission for Scientific Research in Greenland. 1998. 149 pp. ISBN 87‐90369‐24‐6. $35.00 (paper). 相似文献
|