共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yuanrong Dai Fengqin Li Liqin Wu Ruili Wang Ping Li Sunshun Yan Hui Xu Mengling Xia Chunxue Bai 《Respiratory research》2014,15(1)
Background
Roxithromycin (RXM) has been widely used in asthma treatment; however, the mechanism has not been fully understood. The aim of our study was to investigate the underlying mechanism of RXM treatment in mediating the effect of transforming growth factor (TGF)-β1 on airway smooth muscle cells (ASMCs) proliferation and caveolinn-1 expression.Methods
Firstly, the rat ovalbumin (OVA) model was built according to the previous papers. Rat ASMCs were prepared and cultured, and then TGF-β1 production in ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the proliferation of ASMCs was determined using cell counting kit (CCK-8) assay. Additionally, the expressions of caveolin-1, phosphorylated-ERK1/2 (p-ERK1/2) and phosphorylated–AKT (p-AKT) in ASMCs treated with or without PD98059 (an ERK1/2 inhibitor), wortannin (a PI3K inhibitor), β-cyclodextrin (β-CD) and RXM were measured by Western blot. Finally, data were evaluated using t–test or one-way ANOVA, and then a P value < 0.05 was set as a threshold.Results
Compared with normal control, TGF-β1 secretion was significantly increased in asthmatic ASMCs; meanwhile, TGF-β1 promoted ASMCs proliferation (P < 0.05). However, ASMCs proliferation was remarkably inhibited by RXM, β-CD, PD98059 and wortmannin (P < 0.05). Moreover, the expressions of p-ERK1/2 and p-AKT were increased and peaked at 20 min after TGF-β1 stimulation, and then suppressed by RXM. Further, caveolin-1 level was down-regulated by TGF-β1 and up-regulated by inhibitors and RXM.Conclusion
Our findings demonstrate that RXM treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1, which may be the potential mechanism of RXM protection from chronic inflammatory diseases, including bronchial asthma. 相似文献4.
5.
6.
Background
Transforming growth factor-β1 (TGF-β1) induces the differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle cells. Lipid rafts are cholesterol-rich microdomains in cell membranes that reportedly play a key role in receptor-mediated signal transduction and cellular responses. In order to clarify whether lipid rafts are involved in TGF-β1-induced differentiation of hASCs into smooth muscle cells, we analyzed the lipid raft proteome of hASCs.Methods and Results
Pretreatment of hASCs with the lipid raft disruptor methyl-β-cyclodextrin abrogated TGF-β1-induced expression of α-smooth muscle actin, a smooth muscle cell marker, suggesting a pivotal role of lipid rafts in TGF-β1-induced differentiation of hASCs to smooth muscle cells. Sucrose density gradient centrifugation along with a shotgun proteomic strategy using liquid chromatography-tandem mass spectrometry identified 1002 individual proteins as the lipid raft proteome, and 242 of these were induced by TGF-β1 treatment. ADAM12, a disintegrin and metalloproteases family member, was identified as the most highly up-regulated protein in response to TGF-β1 treatment. TGF-β1 treatment of hASCs stimulated the production of both ADAM12 protein and mRNA. Silencing of endogenous ADAM12 expression using lentiviral small hairpin RNA or small interfering RNA abrogated the TGF-β1-induced differentiation of hASCs into smooth muscle cells.Conclusions
These results suggest a pivotal role for lipid raft-associated ADAM12 in the TGF-β1-induced differentiation of hASCs into smooth muscle cells. 相似文献7.
8.
Franco Klingberg Melissa L. Chow Anne Koehler Stellar Boo Lara Buscemi Thomas M. Quinn Mercedes Costell Benjamin A. Alman Elisabeth Genot Boris Hinz 《The Journal of cell biology》2014,207(2):283-297
Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer. 相似文献
9.
Transforming growth factor-β1 (TGF-β1) potently induces the epithelial-mesenchymal transition (EMT) during tumoral progression. Although Sky-interacting protein (SKIP) regulates TGF-β1-induced Smad activation, its role in the induction of cell malignance remains uncertain. We found that TGF-β1 increases SKIP expression in PDV cells. In cells stably transfected with SKIP antisense, AS-S, Smad3 activation decreased, along with an inhibition of TGF-β1-induced EMT, and the cells were sensitized to the TGF-β1-dependent inhibition of proliferation. Also, AS-S cells showed a weaker migration and invasion response. Moreover, TGF-β1-induced urokinase-type plasminogen activator expression was inhibited, concomitantly with a TGF-β1-independent increment of the plasminogen-activator inhibitor-1 expression. Thus, these results suggest that SKIP is required for EMT and invasiveness induced by TGF-β1 in transformed cells. 相似文献
10.
Summary Platelet-derived growth factor (PDGF) and transforming growth factor beta-1(TGF-β1) were tested separately or together for
the ability to stimulate migration of human aortic vascular smooth muscle cells (VSMC). PDGF (10 ng/ml) stimulated migration
of VSMC over a 48-h period. TGF-β1 (10 ng/ml) had no effect on migration during the same period. VSMC exposed simultaneously
to both TGF-β1 and PDGF exhibited diminished migration (50%) when compared to cells treated only with PDGF. Cells that migrated
in the presence of PDGF possessed short actin cables that extended from cellular processes at the leading edge of migrating
cells; focal adhesions containing the αvβ3/β5 integrins localized to the same region. Cells grown in the presence of TGF-β1 exhibited long, intensely stained actin filaments
that spanned the entire length of the cell and were similar to untreated control VSMC. Focal adhesions containing αvβ3/β5 distributed evenly on the basal surface in both TGF-β1-treated cells and control cultures. Cellular responses to PDGF were
mitigated when TGF-β1 was present in the culture medium. VSMC grown in the presence of both PDGF and TGF-β1 exhibited elongated
actin filaments that were similar to nonmotile TGF-β1-treated cultures. Concomitant exposure of VSMC to PDGF and TGF-β1 resulted
in focal adhesions that distributed evenly on the lower cell surface. This study suggests that TGF-β1 can partially reverse
the stimulatory effect of PDGF on VSMC migration in vitro by modifying the actin cytoskeleton and the distribution of the α
vβ3/β5 integrins. 相似文献
11.
Janowski E Jiao X Katiyar S Lisanti MP Liu M Pestell RG Morad M 《The international journal of biochemistry & cell biology》2011,43(8):1104-1113
Tumor progression involves the acquisition of invasiveness through a basement membrane. The c-jun proto-oncogene is overexpressed in human tumors and has been identified at the leading edge of human breast tumors. TGF-β plays a bifunctional role in tumorigenesis and cellular migration. Although c-Jun and the activator protein 1 (AP-1) complex have been implicated in human cancer, the molecular mechanisms governing cellular migration via c-Jun and the role of c-Jun in TGF-β signaling remains poorly understood. Here, we analyze TGF-β mediated cellular migration in mouse embryo fibroblasts using floxed c-jun transgenic mice. We compared the c-jun wild type with the c-jun knockout cells through the use of Cre recombinase. Herein, TGF-β stimulated cellular migration and intracellular calcium release requiring endogenous c-Jun. TGF-β mediated Ca(2+) release was independent of extracellular calcium and was suppressed by both U73122 and neomycin, pharmacological inhibitors of the breakdown of PIP(2) into IP(3). Unlike TGF-β-mediated Ca(2+) release, which was c-Jun dependent, ATP mediated Ca(2+) release was c-Jun independent. These studies identify a novel pathway by which TGF-β regulates cellular migration and Ca(2+) release via endogenous c-Jun. 相似文献
12.
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation. 相似文献
13.
14.
15.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells. 相似文献
16.
Rohollah Nikooie Sohil Jafari-Sardoie Vahid Sheibani Amir Nejadvaziri Chatroudi 《Journal of cellular physiology》2020,235(7-8):5649-5665
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy. 相似文献
17.
Lu Liu Yilin Pan Cui Zhai Yanting Zhu Rui Ke Wenhua Shi Jian Wang Xin Yan Xiaofan Su Yang Song Li Gao Manxiang Li 《Journal of cellular physiology》2019,234(1):669-681
The aims of the current study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cell (ASMC) proliferation and to determine the effect of activation of peroxisome proliferation–activated receptor-γ (PPAR-γ) on TGF-β1-induced rat ASMC proliferation and its underlying mechanisms. TGF-β1 upregulated microRNA 21 (miR-21) expression by activating Smad2/3, and this in turn downregulated forkhead box O1 (FOXO1) mRNA expression. In addition, TGF-β1–Smad–miR-21 signaling also downregulated phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and thus de-repressed the PI3K–Akt pathway. Depletion of PTEN reduced the nuclear FOXO1 protein level without affecting its mRNA level. Inhibition of the PI3K–Akt pathway or proteasome function reversed PTEN knockdown-induced nuclear FOXO1 protein reduction. Our study further showed that loss of FOXO1 increased cyclin D1 expression, leading to rat ASMC proliferation. Preincubation of rat ASMCs with pioglitazone, a PPAR-γ activator, blocked TGF-β1-induced activation of Smad2/3 and its downstream targets changes of miR-21, PTEN, Akt, FOXO1, and cyclin D1, resulting in the inhibition of rat ASMC proliferation. Our study suggests that the activation of PPAR-γ inhibits rat ASMC proliferation by suppressing Smad–miR-21 signaling and therefore has a potential value in the prevention and treatment of asthma by negatively modulating airway remodeling. 相似文献
18.
The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis. 相似文献
19.
Extracellular matrix and airway smooth muscle interactions: a target for modulating airway wall remodelling and hyperresponsiveness? 总被引:1,自引:0,他引:1
The airway smooth muscle from asthmatic airways produces increased amounts and an altered composition of extracellular matrix proteins. The extracellular matrix can in turn influence the phenotype and function of airway smooth muscle cells, affecting the biochemical, geometric, and mechanical properties of the airway wall. This review provides a brief overview of the current understanding of the biology associated with airway smooth muscle interactions with the extracellular matrix. We present future directions needed for the study of cellular and molecular mechanisms that determine the outcomes of extracellular matrix - airway smooth muscle interactions, and discuss their possible importance as determinants of airway function in asthma. 相似文献
20.
Airway disease distribution and/or severity exhibit sex differences suggesting that sex hormones are involved in the respiratory system physiology and pathophysiology. The implication of airway smooth muscle cells (ASMCs) in the physiology of the airways and the pathogenetic mechanism of airway remodeling is of great interest. Therefore, we studied the effect of testosterone and 17β-estradiol on ASMC proliferation and the mechanisms involved.Cell proliferation was estimated using the methyl-[3H]thymidine incorporation and Cell Titer 96® AQueous One Solution Assay methods. ASMC isolated from adult male or female rabbit trachea were incubated with testosterone (1 pM-1 μM) or 17β-estradiol (1 pM-1 μM), in the presence or absence of the androgen receptor antagonist flutamide (10 nM) or estrogen receptor antagonist ICI182780 (10 nM), as well as of the PI3K inhibitors LY294002 (20 μM) or wortmannin (1 μM), or the MAPK inhibitors PD98059 (100 μM) or U0126 (1 μM).After 24 h of incubation, testosterone and 17β-estradiol increased methyl-[3H]thymidine incorporation and cell number, in ASMC isolated from male or female animals. The induction of ASMC proliferation by testosterone or 17β-estradiol was inhibited by flutamide or ICI182780 respectively, as well as by LY294002, wortmannin, PD98059 or U0126.In conclusion, testosterone and 17β-estradiol have a mitogenic effect on ASMC, which is receptor-mediated and involves the MAPK and PI3K signaling pathways. Moreover, their effect is the same for ASMC from male and female animals. It is possible that gender-related differences in ASMC remodeling, may be influenced by the different patterns of sex steroid hormone secretion in males and females. 相似文献