首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otto K  Williams J 《IEEE pulse》2012,3(1):27-29
Neural implantation of devices and the subsequent tissue response are complex and cascading physical and biological phenomena. Creation of reliable neural interfaces remains a significant challenge. Penetrating central nervous system interfaces persist as the most challenging to realize but continue to be the most attractive because of the information bandwidth advantages they provide. This rich information source is essential for achieving next-generation prosthetic control. Specific challenges of penetrating central nervous system interfaces arise because of the reactive tissue response to the initial injury due to device insertion as well as the continued response due to device indwelling. These responses consist of biochemical signaling events, microglial activation, and astrogliotic cell reorganization that result in biophysical changes of the tissue near the implanted device and finally, electrophysiological neural cell/signal loss (Figure 1). The ultimate realization of reliable penetrating neural interfaces will require careful science and engineering approaches incorporating knowledge of relevant and critical biological, physical, and chemical factors, especially their interrelationship. In this article, we describe a comprehensive strategy to assess the reliability of penetrating central neural interfaces based on the biology and pathology of the injury and indwelling tissue responses. Our strategy involves a parallel, self-informing approach by simultaneous development of new in vitro and in vivo assessment techniques as well as using these state-of-the-art techniques to conduct accelerated lifetime assessments of neural interface degradation.  相似文献   

2.
The U.S. Food and Drug Administration (FDA) is charged with assuring the safety and effectiveness of medical devices. Before any medical device can be brought to market, it must comply with all federal regulations regarding FDA processes for clearance or approval. Navigating the FDA regulatory process may seem like a daunting task to the innovator of a novel medical device who has little experience with the FDA regulatory process or device commercialization. This review introduces the basics of the FDA regulatory premarket process, with a focus on issues relating to chronically implanted recording devices in the central or peripheral nervous system. Topics of device classification and regulatory pathways, the use of standards and guidance documents, and optimal time lines for interaction with the FDA are discussed. Additionally, this article summarizes the regulatory research on neural implant safety and reliability conducted by the FDA's Office of Science and Engineering Laboratories (OSEL) in collaboration with Defense Advanced Research Projects Agency (DARPA) Reliable Neural Technology (RE-NET) Program. For a more detailed explanation of the medical device regulatory process, please refer to several excellent reviews of the FDA's regulatory pathways for medical devices [1]-[4].  相似文献   

3.
The development of invasive, rehabilitative neuroprosthetics for humans requires reliable neural probes that are capable of recording large ensembles of neurons for a long period of time. Recent advances in the development of neuroprosthetics in animals and humans have shown that communication and control can be directly derived from the central nervous system (CNS) for restoring lost motor ability. This proof of concept has opened the possibility of new therapies for the millions of individuals suffering from neurological disorders of the nervous system. The success of these therapies hinges on the ability to reliably access the relevant signals from the brain with high quality for the lifetime of the patient. As a result, research has focused on the cascade of events that follow chronic implantation of microelectrodes and temporal degradation in the signal and electrode quality: signal-to-noise ratio, noise floor, peak amplitude, and neuronal yield. Implanted microelectrodes have been reported to suffer from time-dependent degradation in signal quality due to unknown issues related to tissue interfaces.  相似文献   

4.
MOTIVATION: There are a large number of computational programs freely available to bioinformaticians via a client/server, web-based environment. However, the client interface to these tools (typically an html form page) cannot be customized from the client side as it is created by the service provider. The form page is usually generic enough to cater for a wide range of users. However, this implies that a user cannot set as 'default' advanced program parameters on the form or even customize the interface to his/her specific requirements or preferences. Currently, there is a lack of end-user interface environments that can be modified by the user when accessing computer programs available on a remote server running on an intranet or over the Internet. RESULTS: We have implemented a client/server system called ORBIT (Online Researcher's Bioinformatics Interface Tools) where individual clients can have interfaces created and customized to command-line-driven, server-side programs. Thus, Internet-based interfaces can be tailored to a user's specific bioinformatic needs. As interfaces are created on the client machine independent of the server, there can be different interfaces to the same server-side program to cater for different parameter settings. The interface customization is relatively quick (between 10 and 60 min) and all client interfaces are integrated into a single modular environment which will run on any computer platform supporting Java. The system has been developed to allow for a number of future enhancements and features. ORBIT represents an important advance in the way researchers gain access to bioinformatics tools on the Internet.  相似文献   

5.
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.  相似文献   

6.
Structure-based 3D-QSAR approaches (CoMFA and CoMSIA) were applied to understand the structural requirements of the Cyclin-dependent kinase 5/p25 inhibitors. Cyclin-dependent kinase 5 (CDK5) is believed to play an important role in the development of the central nervous system during the process of mammalian embryogenesis. Genetic algorithm based docking program (GOLD) was successfully utilized to orient the compounds inside the binding pocket of the CDK5/p25 structure. The adapted alignment method with the suitable parameters resulted in a reliable model. Furthermore, the final model was robust enough to forecast the activities of test compounds, satisfactorily. The contour maps were produced around the functional groups to understand the SAR requirements. Moreover, we also investigate the structural attributes of the inhibitors which make them selective toward CDK5/p25 over its close counterpart, i.e., CDK2. The study could be helpful to rationalize the new compounds with better inhibition and selectivity profiles against CDK5/p25.  相似文献   

7.
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.  相似文献   

8.
Complexity in the nervous system is established by developmental genetic programs, maintained by differential genetic profiles and sculpted by experiential and environmental influence over gene expression. Determining how specific genes define neuronal phenotypes, shape circuit connectivity and regulate circuit function is essential for understanding how the brain processes information, directs behavior and adapts to changing environments. Mouse genetics has contributed greatly to current percepts of gene‐circuit interfaces in behavior, but considerable work remains. Large‐scale initiatives to map gene expression and connectivity in the brain, together with advanced techniques in molecular genetics, now allow detailed exploration of the genetic basis of nervous system function at the level of specific circuit connections. In this review, we highlight several key advances for defining the function of specific genes within a neural network .  相似文献   

9.
Microtechnology has an important role to play in maximizing the indenpendence of severely handicapped people, especially those with few reliable voluntary movements. Such movements must be harnessed efficiently to provide control over all aspects of life including communication, mobility and the immediate environment. To highlight the role of microtechnology in the day to day life of a severely handicapped person living at home, a case study is presented. The systems Mary uses for communication and environmental control are described and their limitations discussed. Adaptive man-machine interfaces are proposed and foreseeable developments in the fields of speech technology and robotics are considered. Successful introduction of high technology devices requires a full appreciation of medical and social factors as well as those relating to the technology. This is achieved through close partnership between the clinical engineer and the rehabilitation consultant to the benefit of the severely handicapped person.  相似文献   

10.
A computerized data acquisition system for on-line analysis of the parameters of neuromuscular transmission is described. Both hardware usage and software methodologies are discussed with regard to sampling in real-time and analyzing miniature end-plate potentials (MEPPs), end-plate potentials (EPPs) and quantal content of the evoked transmitter release. Significant features of the program include: (1) automatic threshold determination for MEPP detection; (2) the use of a circular buffer to give pre-trigger information; (3) real-time noise spike rejection; (4) an automatic procedure for EPP failure detection; (5) rapid quantal content determinations by several methods as well as complete MEPP and EPP waveform analysis. The system has proven both accurate and reliable during more than two years of use. Advantages of the system over conventional methods include: (1) increased accuracy and efficiency in data analysis; (2) immediate availability of results; (3) conventional data storage; (4) flexibility to meet changing requirements.  相似文献   

11.
Oligodendrocytes myelinate axons in the vertebrate central nervous system (CNS). They develop from precursor cells (OPCs), some of which persist in the adult CNS. Adult OPCs differ in many of their properties from OPCs in the developing CNS. In this study we have purified OPCs from postnatal rat optic nerve and cultured them in serum-free medium containing platelet-derived growth factor (PDGF), the main mitogen for OPCs, but in the absence of thyroid hormone in order to inhibit their differentiation into oligodendrocytes. We find that many of the cells continue to proliferate for more than a year and progressively acquire a number of the characteristics of OPCs isolated from adult optic nerve. These findings suggest that OPCs have an intrinsic maturation program that progressively changes the cell's phenotype over many months. When we culture the postnatal OPCs in the same conditions but with the addition of basic fibroblast growth factor (bFGF), the cells acquire these mature characteristics much more slowly, suggesting that the combination of bFGF and PDGF, previously shown to inhibit OPC differentiation, also inhibits OPC maturation. The challenge now is to determine the molecular basis of such a protracted maturation program and how the program is restrained by bFGF.  相似文献   

12.
13.
From genes to behaviour, the simple model system approach has played many pivotal roles in deciphering nervous system function in both invertebrates and vertebrates. However, with the advent of sophisticated imaging and recording techniques enabling the direct investigation of single vertebrate neurons, the utility of simple invertebrate organisms as model systems has been put to question. To address this subject meaningfully and comprehensively, we first review the contributions made by invertebrates in the field of neuroscience over the years, paving the way for similar breakthroughs in higher animals. In particular, we focus on molluscan (Lymnaea, Aplysia, and Helisoma) and leech (Hirudo) models and the pivotal roles they have played in elucidating mechanisms of synapse formation and plasticity. While the ultimate goal in neuroscience is to understand the workings of the human brain in both its normal and diseased states, the sheer complexity of most vertebrate models still makes it difficult to define the underlying principles of nervous system function. Investigators have thus turned to invertebrate models, which are unique with respect to their simple nervous systems that are endowed with a finite number of large, individually identifiable neurons of known function. We start off by discussing in vivo and semi-intact preparations, regarding their amenability to simple circuit analysis. Despite the 'simplicity' of invertebrate nervous systems however, it is still difficult to study individual synaptic connections in detail. We therefore emphasize in the next section, the utility of studying identified invertebrate neurons in vitro, to directly examine the development, specificity, and plasticity of synaptic connections in a well-defined environment, at a resolution that it is still unapproachable in the intact brain. We conclude with a discussion of the future of invertebrates in neuroscience in elucidating mechanisms of neurological disease and developing neuron-silicon interfaces.  相似文献   

14.
A determination of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) in nervous tissue is described. The method is based on a rapidly performed isolation of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA from one single nervous tissue sample on small columns of Sephadex G-10, followed by reverse-phase high-performance liquid chromatography with electrochemical detection. A new type of electrochemical detector based on a rotating disk electrode (RDE) was used. The rotating disc electrode was found to be a reliable and sensitive amperometric detector with several advantages over the currently used thin-layer cells. The detector appeared very useful for routine analysis. Practical details are given for the routine use of the RDE. Brain samples containing no more than 75-150 pg (DA, DOPA, DOPAC, HVA, and 5-HIAA) or 500 pg (NA) could be reproducibly assayed with high recovery (approx. 85%) and precision (approx. 5%), without the use of internal standards. Endogenous concentrations of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA were determined in eight brain structures.  相似文献   

15.
The acute central nervous system effects of relaxation techniques (RT) have not been systematically studied. We conducted a controlled, randomized study of the central nervous system effects of RT using spectral analysis of EEG activity. Thirty-six subjects were randomized to either RT or a music comparison condition. After listening to an RT audiotape or music audiotapes daily for 6 weeks, the acute central nervous system effects of RT and music were measured using power spectral analysis of alpha and theta EEG activity in all cortical regions. RT produced significantly greater increases in theta activity in multiple cortical regions compared to the music condition. These findings are consistent with widespread reductions in cortical arousal during RT. They extend previous findings and suggest that theta, and not alpha, EEG may be the most reliable marker of the central nervous system effects of RT. These findings demonstrate that RT produce greater reductions in central nervous system activity than a credible comparison condition. The findings suggest that RT represent a hypoactive central nervous system state that may be similar to Stage 1 sleep and that RT may exert their therapeutic effects, in part, through cerebral energy conservation/restoration.  相似文献   

16.
目的:研发放射治疗计划和放射治疗信息管理系统。方法:放疗网络采用客户机服务器模式,Oracle 9i为数据库服务器;使用PowerBuilder9i为编程语言进行开发。结果:该系统包括医生模块(放射治疗计划模块)、技术员模块、物理师模块、放射治疗电子病历查询和统计模块、系统管理模块五个部分。结论:该系统运行稳定,数据安全可靠,操作简单,可作为科室信息化建设的重要组成部分。  相似文献   

17.
The gill withdrawal reflex is suppressed in sexually active Aplysia   总被引:1,自引:0,他引:1  
In Aplysia, the central nervous system and peripheral nervous system interact and form an integrated system that mediates adaptive gill withdrawal reflex behaviours evoked by tactile stimulation of the siphon. The central nervous system (CNS) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) in the mediation of these behaviours. We found that the CNS's suppressive control over the PNS was increased significantly in animals engaged in sexual activity as either a male or female. In control animals, the evoked gill withdrawal reflex met a minimal response amplitude criterion, while in sexually active animals the reflex did not meet this criterion. At the neuronal level, the increased CNS suppressive control was manifested as a decrease in excitatory input to the central gill motor neurons.  相似文献   

18.
19.
"Integration" is a key term in describing how nervous system can perform high level functions. A first condition to have "integration" is obviously the presence of efficient "communication processes" among the parts that have to be combined into the harmonious whole. In this respect, two types of communication processes, called wiring transmission (WT) and volume transmission (VT), respectively, were found to play a major role in the nervous system, allowing the exchange of signals not only between neurons, but rather among all cell types present in the central nervous system (CNS). A second fundamental aspect of a communication process is obviously the recognition/decoding process at target level. As far as this point is concerned, increasing evidence emphasizes the importance of supramolecular complexes of receptors (the so called receptor mosaics) generated by direct receptor-receptor interactions. Their assemblage would allow a first integration of the incoming information already at the plasma membrane level. Recently, evidence of two new subtypes of WT and VT has been obtained, namely the tunnelling nanotubes mediated WT and the microvesicle (in particular exosomes) mediated VT allowing the horizontal transfer of bioactive molecules, including receptors, RNAs and micro-RNAs. The physiological and pathological implications of these types of communication have opened up a new field that is largely still unexplored. In fact, likely unsuspected integrative actions of the nervous system could occur. In this context, a holistic approach to the brain-body complex as an indissoluble system has been proposed. Thus, the hypothesis has been introduced on the existence of a brain-body integrative structure formed by the "area postrema/nucleus tractus solitarius" (AP/NTS) and the "anteroventral third ventricle region/basal hypothalamus with the median eminence" (AV3V-BH). These highly interconnected regions operate as specialized interfaces between the brain and the body integrating brain-borne and body-borne neural and humoral signals.  相似文献   

20.
The purpose of this study was to compare a technology‐based system, an in‐person behavioral weight loss intervention, and a combination of both over a 6‐month period in overweight adults. Fifty‐one subjects (age: 44.2 ± 8.7 years, BMI: 33.7 ± 3.6 kg/m2) participated in a 6‐month behavioral weight loss program and were randomized to one of three groups: standard behavioral weight loss (SBWL), SBWL plus technology‐based system (SBWL+TECH), or technology‐based system only (TECH). All groups reduced caloric intake and progressively increased moderate intensity physical activity. SBWL and SBWL+TECH attended weekly meetings. SBWL+TECH also received a TECH that included an energy monitoring armband and website to monitor energy intake and expenditure. TECH used the technology system and received monthly telephone calls. Body weight and physical activity were assessed at 0 and 6 months. Retention at 6 months was significantly different (P = 0.005) between groups (SBWL: 53%, SBWL+TECH: 100%, and TECH: 77%). Intent‐to‐treat (ITT) analysis revealed significant weight losses at 6 months in SBWL+TECH (?8.8 ± 5.0 kg, ?8.7 ± 4.7%), SBWL (?3.7 ± 5.7 kg, ?4.1 ± 6.3%), and TECH (?5.8 ± 6.6 kg, ?6.3 ± 7.1%) (P < 0.001). Self‐report physical activity increased significantly in SBWL (473.9 ± 800.7 kcal/week), SBWL+TECH (713.9 ± 1,278.8 kcal/week), and TECH (1,066.2 ± 1,371 kcal/week) (P < 0.001), with no differences between groups (P = 0.25). The TECH used in conjunction with monthly telephone calls, produced similar, if not greater weight losses and changes in physical activity than the standard in‐person behavioral program at 6 months. The use of this technology may provide an effective short‐term clinical alternative to standard in‐person behavioral weight loss interventions, with the longer term effects warranting investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号