首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2010,45(3):355-362
The purpose of this paper is to clarify the effect of the two different GAC types (steam activated or chemically activated) on DOC biodegradation in biological activated carbon (BAC) columns. For this purpose, raw water taken from a surface reservoir was fed to continuous-flow lab-scale biofiltration columns which were run for more than 18,000 bed volumes. The effect of pre-ozonation on DOC removal was also evaluated. Experimental results showed that biological activity inside the BAC columns extended the service life and the choice of filter material was crucial in BAC systems. The DOC biodegradation was higher in thermally activated carbon columns compared to the chemically activated one. The ability of GAC to better adsorb and retain organic compounds increased the chance of biodegradation. Contrary to expectations, pre-ozonation did not significantly enhance DOC biodegradation. Despite the high increase in biodegradable dissolved organic carbon (BDOC) upon ozonation, overall DOC biodegradation efficiencies did not differ from raw water. Overall, the DOC biodegradation in columns was higher than in most of the studies. This observation was primarily attributed to the low specific ultraviolet absorption (SUVA) values in raw water indicating a high biodegradability.  相似文献   

2.
The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects.  相似文献   

3.
The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects.  相似文献   

4.
Disinfection of bacteria attached to granular activated carbon.   总被引:19,自引:13,他引:6       下载免费PDF全文
Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies.  相似文献   

5.
The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.  相似文献   

6.
Aim:  Identification of the predominating cultivable bacteria in granular activated carbon (GAC) filters used in a variety of water treatment plants for selecting representative strains to study the role of bacteria in the removal of dissolved organic matter.
Methods and Results:  Bacterial isolates were collected from 21 GAC filters in nine water treatment plants treating either ground water or surface water with or without oxidative pretreatment. Enrichment of samples in dilute liquid medium improved culturability of the bacteria by approximately log unit, to 9% up to 70% of the total cell counts. Genomic fingerprinting and 16S rDNA sequence analysis revealed that most (68%) of the isolates belonged to the Betaproteobacteria and 25% were identified as Alphaproteobacteria . The number of different genera within the Betaproteobacteria was higher in the GAC filters treating ozonated water than in the filters treating nonozonated water. Polaromonas was observed in nearly all of the GAC filters (86%), and the genera Hydrogenophaga , Sphingomonas and Afipia were observed in 43%, 33% and 29% of the filter beds, respectively. AFLP analysis revealed that the predominating genus Polaromonas included a total of 23 different genotypes.
Conclusions:  This study is the first to demonstrate that Polaromonas , which has mainly been observed in ultraoligotrophic freshwater environments, is a common component of the microbial community in GAC filters used in water treatment.
Significance and Impact of the Study:  The predominance of ultraoligotrophic bacteria in the GAC filters indicates that very low concentrations of substrates are available for microbial growth. Polaromonas species are suited for further studies on the nutritional versatility and growth kinetics enabling the modelling of biodegradation processes in GAC filters.  相似文献   

7.
Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans. Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

8.
Three activated carbon filters for point-of-use water treatment were tested in laboratory and field studies for chemical removal and microbiological effects on water. All removed free available chlorine in municipally treated water to below the limit of detection, but removed only about 50 to 70% of the total available chlorine and 4 to 33% of the total organic carbon. Standard plate count bacteria in the effluent increased steadily with time for 3 weeks and remained elevated over the 8-week period of the study. Total coliform bacteria were found to persist and proliferate on the filters for several days after transient contamination of the influent water. Silver-containing activated carbon filters suppressed total coliform but not total bacterial growth. Pseudomonas aeruginosa was recovered from the effluents of all filters at some time during the tests.  相似文献   

9.
Experiments were performed to evaluate the comparative growth and physiology ofKlebsiella oxytoca grown attached to granular activated carbon particles (GAC) and in liquid medium. Laboratory studies showed that when this organism attached to GAC, the growth rate was enhanced more than 10 times in the presence of glutamate, a substrate that adsorbed to the surface. No differences were observed if the substrate was glucose, which did not adsorb to GAC. Cellular [3H]thymidine uptake was used to estimate DNA biosynthesis. Attached bacteria grown in a minimal nutrient medium containing 20.0 mg/liter glutamate took up 5 times more [3H]thymidine than cells grown in suspension. [3H]uridine was used as a measure of RNA turnover. Attached cells were shown to assimilate 11 times more [3H]uridine than cells in liquid media. Cell size measurements were performed by differential filtration. Cells grown in a minimal medium with 20.0 mg/liter glutamate decreased in size over time, with 62% of the total number passing through a 1.0m filter after 9 days incubation. In the same period, 39% of a cell population that was grown on GAC passed through a 1.0m filter. These studies indicate that GAC provides an interfacial environment for the enhanced growth ofK. oxytoca when glutamate is the substrate.  相似文献   

10.
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies.  相似文献   

11.
Microbial ecosystems in compost and granular activated carbon biofilters   总被引:2,自引:0,他引:2  
Compost and granular activated carbon biofilters operated at a wastewater treatment plant simultaneously removed low concentrations of hydrogen sulfide and volatile organic compounds. Through the use of phospholipid fatty acid analyses, the effects of declining pH caused by sulfide oxidation were established for microbial growth, microorganism stress, and microbial community structure. Microorganisms on both media demonstrated increases in microbial densities, varying degrees of environmental stress, and domination by gram-negative bacteria. However, the declining pH had little effect on compound removal, which was greater than 99% for the hydrogen sulfide and greater than 70% for the oxygenated and aromatic hydrocarbons. The microbial communities adjusted to difficult environmental conditions through acclimation of the species present or by growth of low-pH-tolerant species. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 296-303, 1997.  相似文献   

12.
Three activated carbon filters for point-of-use water treatment were tested in laboratory and field studies for chemical removal and microbiological effects on water. All removed free available chlorine in municipally treated water to below the limit of detection, but removed only about 50 to 70% of the total available chlorine and 4 to 33% of the total organic carbon. Standard plate count bacteria in the effluent increased steadily with time for 3 weeks and remained elevated over the 8-week period of the study. Total coliform bacteria were found to persist and proliferate on the filters for several days after transient contamination of the influent water. Silver-containing activated carbon filters suppressed total coliform but not total bacterial growth. Pseudomonas aeruginosa was recovered from the effluents of all filters at some time during the tests.  相似文献   

13.
The performance of a biofilter packed with Active Carbon (AC) was evaluated. The effluent (alcohol, ketones, esters, aromatic and chlorinated compounds) treated was a representative mixture of most common industrial emissions. To achieve a better knowledge of multicomponent adsorption mechanisms, and to underline the interest of inoculating AC, a control abiotic humidified filter had been operated in the same conditions as the biofilter. For a load of 110 g VOC m(-3) AC h(-1), after 55 days of operation, the removal efficiency was higher in the biotic than in the abiotic filter (85% vs 55%, respectively). Moreover, in the biofilter, at steady state, the elimination of all compounds was almost complete except for chlorinated compounds and p-xylene (removal efficiency of 25% and 64%, respectively). The microbial colonization of AC involved a decrease of the adsorption sites accessibility and enhanced the treatment of VOCs (volatile organic compounds) having a lower affinity for activated carbon. Moreover, while aromatic compounds and MIBK were eliminated along the overall height of the biofilter, pollutants with reduced affinity for AC, such as methanol, acetone, and halogenated compounds were only treated on the second half of the reactor. Thus, the affinity for activated carbon was an important parameter controlling the biodegradation process. Nevertheless, the use of AC as packing material in biofilters treating complex mixtures of VOCs is limited. Actually, similar removal efficiency could be reached, in the same conditions, for a biofilter packed with granular peat. Furthermore, for the biofilter packed with AC, the column height necessary to remove biodegradable compounds, with reduced affinity for the support, was important.  相似文献   

14.
The water quality of 24 rural, domestic groundwater supplies treated with point-of-use, powdered activated carbon (PAC) filters was monitored to determine how such treatment might impact the bacteriological quality of private, residential drinking water supplies. Heterotrophic-plate-count (HPC) and total coliform analyses were performed on raw, PAC-treated, and overnight or stagnant (first-draw) PAC-treated water samples. Densities of HPC bacteria were elevated by 0.86 and 0.20 orders of magnitude for spring and well water systems, respectively, in PAC-treated effluents following overnight stagnation compared with levels in untreated treated effluents. Densities of HPC bacteria in PAC-treated effluents were significantly reduced (P < 0.01) below influent levels, however, after the point-of-use device was flushed for 2 min. While PAC significantly reduced the number of coliforms in product waters (P < 0.01), these indicator organisms were still detected in some effluents. Seasonal variations were evident in microbial counts from spring but not well water systems. It appears that aside from periods following stagnant-water use, such as overnight, PAC treatment does not compromise the bacteriological quality of drinking water obtained from underground sources.  相似文献   

15.
Oh WD  Lim PE  Seng CE  Sujari AN 《Bioresource technology》2011,102(20):9497-9502
The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.  相似文献   

16.
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies.  相似文献   

17.
Granular activated carbon (GAC) beds may be used for removal of dissolved organic matter during the treatment of drinking water. However, they might also change the microbiological quality of the water entering the distribution system either by changing the predominant bacteria or the bacterial density of the treated water. A 3-year pilot plant study of water treatment using GAC beds was conducted at the Baxter Water Treatment Plant in Philadelphia. During the study, bacteria were isolated from the raw water and from the effluents of the GAC treatment units. At the end of the study, bacteria were also isolated from the GAC units and from sand beds operated in parallel with the GAC units. Bacterial genera in the GAC effluents and in the GAC units themselves were similar to those found in the raw water and in the sand beds. Prechlorination and (or) preozonation of the water before GAC treatment had no noticeable effect on the bacterial genera found as compared with GAC unit having no predisinfection. The bacterial genera found in this study were similar to those found in seven other studies of GAC water treatment that used a variety of treatment schemes and a variety of heterotrophic plate count techniques to evaluate bacterial populations. From these several studies it appears that GAC treatment does not change the nature of the bacterial populations associated with drinking water.  相似文献   

18.
The adsorption of a recalcitrant fluoroaromatic compound, fluorobenzene (FB), onto granular activated carbon (GAC) was evaluated. The respective isotherm was obtained and the Langmuir, Freundlich and Redlich-Peterson models were fitted to the experimental data, with the Redlich-Peterson model giving the best fitting. Freundlich model also provided a good fit but the Langmuir model could not adequately fit the experimental data, especially at high FB concentrations. Maximal adsorption capacity of FB onto GAC was found to be 388mg of FB per gram of GAC. The reversibility of the adsorption of FB onto GAC was investigated, both in the absence and presence of microorganisms. Abiotic desorption of FB occurred to a small extent (between 3% and 22%, for amounts of FB initially adsorbed to the GAC between 37 and 388mgg(-1)), and bioregeneration of GAC was shown to occur when the matrix was exposed to a FB degrading culture, with 58-80% of the adsorbed FB being biodegraded. A residual amount of FB showed not to be bioavailable, suggesting that part of the adsorbed FB may be irreversibly bound. The fraction of the non-bioavailable FB increased at higher amounts of adsorbed FB, from 19% to 33%. The results indicate that the GAC employed in this study has a good capacity to adsorb FB and that bioregeneration of this matrix is a feasible process.  相似文献   

19.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

20.
Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号