首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transverse sections of the placenta of hot pepper, Capsicumannuum var. annuum cv. Karayatsubusa, at different stages afterflowering were examined microscopically. Examination of thecellular structure of the placenta using a light microscoperevealed that some morphological changes took place mainly inthe epidermal tissue of the placenta during maturation. Elongationof the epidermal cells and many osmiophilic granules were recognizedin the epidermal cells of the placenta in which capsaicinoidwas being formed and actively accumulated. Moreover, a granule-likestructure having an absorption at 280 nm was also recognizedby ultraviolet microscopy around the same region where the osmiophilicgranules were observed. By electron microscopy, many electron-densegranules stained with glutaraldehyde and osmium tetroxide wereobserved both in the small vesicles and vacuoles of epidermalcells of the placenta. The electron-dense granules varied insize from smaller than 1 µm to larger than 2 µmin diameter. They were thought to be capsaicinoid and were observedonly in the epidermal cells. Therefore, the epidermal tissueappeared to be the site of capsaicinoid accumulation. 1Formation and metabolism of pungent principle of Capsicum fruits.Part V. (Received December 27, 1979; )  相似文献   

2.
Fluctuations of pungent principles of hot pepper fruits (capsaicinoid), chlorophylls, carotenoid, and fresh fruit weight in Capsicum annuum var. annuum cv. Karayatsubusa at different growth stages after flowering were examined. Capsaicinoid was first detected 20 days after flowering, and reached maximal level around 40 days after flowering, then later decreased gradually. The capsaicinoid composition did not show any appreciable change throughout the stages after flowering. CAP and DC were the major components in all of the stages examined. By using radioisotopic technique, it was found that the main formation and accumulation sites of capsaicinoid are in the placenta of the fruits.  相似文献   

3.
Phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, and capsaicinoid synthetase [Agric. Biol. Chem., 44, 2907 (1980)] activities were investigated in the subcellular fractions from protoplasts of placenta of Capsicum fruits. The subcellular distribution of intermediates of the capsaicinoid biosynthesis, trans-cinnamic acid and trans-p-coumaric acid, and capsaicinoid were also investigated. The activity of trans-cinnamate 4-monooxygenase and capsaicinoid synthetase was in the vacuole fraction. While the activity of phenylalanine ammonia-lyase was in the cytosol fraction. After feeding l-[U-14C]phenylalanine to the protoplast, the newly synthesized trans-p-coumaric acid and capsaicinoid were found in the vacuole fraction, while trans-cinnamic acid was not in the vacuole fraction. The possible role of the vacuole on the biosynthesis of capsaicinoid is also discussed.  相似文献   

4.
Capsicum species produce fruits that synthesize and accumulate unique hot compounds known as capsaicinoids in placental tissues. The capsaicinoid biosynthetic pathway has been established, but the enzymes and genes participating in this process have not been extensively studied or characterized. Capsaicinoids are synthesized through the convergence of two biosynthetic pathways: the phenylpropanoid and the branched-chain fatty acid pathways, which provide the precursors phenylalanine, and valine or leucine, respectively. Capsaicinoid biosynthesis and accumulation is a genetically determined trait in chili pepper fruits as different cultivars or genotypes exhibit differences in pungency; furthermore, this characteristic is also developmentally and environmentally regulated. The establishment of cDNA libraries and comparative gene expression studies in pungent and non-pungent chili pepper fruits has identified candidate genes possibly involved in capsaicinoid biosynthesis. Genetic and molecular approaches have also contributed to the knowledge of this biosynthetic pathway; however, more studies are necessary for a better understanding of the regulatory process that accounts for different accumulation levels of capsaicinoids in chili pepper fruits.  相似文献   

5.
Biosynthetic pathways of acyl moieties of capsaicinoid in intactCapsicum fruits and spheroplasts prepared from placentas ofCapsicum fruits were examined using a radioisotopic technique.In intact Capsicum fruits, L-[U-14C] valine was incorporatedinto capsaicin and dihydrocapsaicin, the acyl constituents ofwhich are even-number branched chain fatty acids, while L-[U-14C]leucine was incorporated into nordihydrocapsaicin and homodihydrocapsaicin,which have odd-number branched chain facty acids as the acylmoieties. The intermediates of the odd- and even-number branchedchain fatty acids were identified with GLC/GPC after the spheroplastshad been incubated with L-[U-14C] valine or L-[U-14C] leucine.After incubation with L-[U-14C] valine, isobutyric acid and8-methyl nonanoic acid were detected, while isopentanoic acidand 9-methyl decanoic acid were found after incubation withL-[U-14C] leucine. The involvement of a-ketoisovalerate or a-ketoisocaproatein the biosynthesis of acyl moieties of capsaicinoid was alsodemonstrated in vitro using cell-free extracts of the placentasof Capsicum fruits. These findings suggest that the acyl moietiesof individual capsaicinoids in Capsicum fruits are synthesizedby pathways similar to those proposed for adipose tissue andbacteria. 1Formation and Metabolism of Pungent Principle of Capsicum Fruits.Part IX. (Received September 2, 1980; Accepted November 17, 1980)  相似文献   

6.
Capsaicinoids are acid amides of C9 - C11 branched-chain fatty acids and vanillylamine. These compounds are responsible for the pungency of the Capsicum species and of cultivars regarded as hot peppers. Moreover, it has been suggested that these compounds play an ecological role in seed dispersal. Because they are used in the pharmacological, food and pesticide industries, much attention has been paid on knowing how their accumulation is controlled, both in the fruit and in cell cultures. Such control involves the processes of biosynthesis, conjugation and catabolism. Recent progress has been made on the biosynthetic pathway, and several of the genes coding for biosynthetic enzymes have been cloned and expression studies performed. With regard to catabolism, cumulative evidence supports that capsaicinoids are oxidized in the pepper by peroxidases. Peroxidases are efficient in catalyzing in vitro oxidation of both capsaicin and dihydrocapsaicin. These enzymes are mainly located in placental and the outermost epidermal cell layers of pepper fruits, as occurs with capsaicinoids, and some peroxidases are present in the organelle of capsaicinoid accumulation, that is, the vacuole. Hence, peroxidases are in the right place for this function. The products of capsaicin oxidation by peroxidases have been characterized in vitro, and some of them have been found to appear in vivo in the Capsicum fruit. Details on the kinetics and catalytic cycle for capsaicin oxidation by peroxidases are also discussed.  相似文献   

7.
8.
The polypeptide composition of nuclear envelopes prepared fromhypocotyls of mung bean (Vigna radiata) was investigated. Thetissue was homogenized in the presence of Triton X-100 and nucleiwere isolated by differential and discontinuous Percoll gradientcentrifugation. The nuclei were subjected to sonication in 2M KC1 or 50 mM lithium diiodosalicylate and then the nuclearenvelopes were collected by centrifugation. Proteins in theenvelope fraction were analyzed by sodium dodecylsulfate-polyacrylamidegel electrophoresis and blotting techniques. When the envelopefraction was incubated with [-32P]ATP, 10 to 15 polypeptideswere labeled and the intensity of labeling of some of thesepolypeptides was enhanced by the addition of calcium ions. Theresults suggest the presence of a protein-phosphorylation systemin nuclear envelopes. Three polypeptides of 100, 42, and 40kDa stained blue with the cationic carbocyanine dye "Stains-all",and they were labeled with 45Ca2+ on a transfer membrane. Thelectin concanavalin A recognized glycoproteins that migratedas polypeptides of 50, 49, 47, 43, 35 and 32 kDa, respectively.Of these polypeptides the two larger ones were prominent andwere solubilized by treatment of the envelope fraction withKCl at 2 M but not at less than 100 mM. These results suggestthat the mung bean nuclear envelope contains some calcium-bindingproteins and glycoproteins. These newly identified proteinsmay become useful as characteristic markers of the nuclear envelope. (Received July 16, 1993; Accepted December 15, 1993)  相似文献   

9.
Although taxol inhibits membrane trafficking, the nature of thisinhibition has not been well defined. In this study, we define theeffects of taxol on endocytosis in CV-1 cells using density gradientcentrifugation of membranes over sorbitol density gradients. Aftertaxol treatment, resident endosomal enzymes and the epidermal growthfactor (EGF) receptor (EGFR) showed significant(P  0.05) enrichment in membraneswith properties of early endosomes(fractions 4 and5); the EGFR andNa+-K+-ATPasewere also significantly (P  0.05)depleted in lysosomal fractions(fractions10 and11). The suggestion that taxolspecifically reduces movement of endosomal constituents to lysosomeswas supported by fluorescence microscopy studies revealing restrictionof EGF to the peripheries of taxol-treated cells, in contrast to the perinuclear lysosomal-like distribution of EGF seen in controls. Kinetic studies with 125I-labeledEGF were also consistent with a taxol-induced block in traffic fromendosomes and lysosomes after 15 min of uptake but also suggested anadditional taxol-sensitive step in trafficking that involvedredistribution of 125I-EGF withinhigh-density compartments after 150 min. Related changes in cytoplasmicdynein distribution were observed within high-density compartments fromtaxol-treated cells, suggesting that this motor might participate inthis later taxol-sensitive trafficking event. Electron microscopicexamination of high-density membranes(fraction12) showed that taxol increased thenumbers of small (<500 nm) dense vesicles, with a relative depletionof the larger (>500 nm) vesicles found in controls. These datademonstrate that disruption of endocytic events by taxol includes theearly accumulation of protein and endocytic markers in endosomes and the later accumulation in a dense compartment that we propose is asubdomain of the lysosomes.

  相似文献   

10.
An attempt was made to explain the abnormal behaviour of stomatain Capsicum scabrous diminutive, a wilty pepper mutant. Stomatalmovement in the pepper plant was found to be associated withchanges in the ion content of the guard cells. These changeswere smaller in the mutant than in the normal plants. In addition,total ion content was higher in the mutant under both controland NaCl treatments. Na+ substituted K+ in its function in stomatalmovement under high salinity. This phenomenon was more pronouncedin the mutant plants. Analysis of whole root systems and leavesof plants grown on solutions of high NaCl or KCl concentrationconfirmed that the regulation of K+ and Na+ uptake mechanismswas not functioning properly in the mutant. Evidence was presentedthat the difference in K+ staining between mutant and normalepidermal cells is an artefact resulting from the differencein leaf anatomy.  相似文献   

11.
Stomata and Structure of Tetraploid Apple Leaves cultured in Vitro   总被引:2,自引:0,他引:2  
Leaves of anther-derived tetraploid apple (Malus pumila Mill.)shoots were examined by low-temperature scanning electron microscopy(LT-SEM). Leaves were serrate and wide with an undulating adaxialsurface due to convex epidermal cells, apparently without crystallineepicuticular wax. Stomata were absent from the adaxial surface,except for the marginal teeth which exhibited 40-60 stomataper leaf; they probably originated from residual mitotic activity.One third of abaxial stomata was occluded by the residual cuticleof the mother guard cell across the stomatal pore which rupturedwhen the stomata became functional. The stomatal index was 7·2(± 1·6) with 60-75 stomata mm-2, i.e. abaxialstomata of tetraploid leaves expanded in vitro were less frequentthan those in triploid leaves either cultured in vitro (475-575stomata mm-2) or grown on the tree (320-390 stomata mm-2) wherethe stomatal index was 21 (± 4). Freeze-fracture transsectionsshowed that the tetraploid in vitro leaves were composed ofa layer of adaxial epidermal cells, followed by a single layerof palisade cells and four to five layers of spongy mesophyllcells and the abaxial layer of epidermal cells, in contrastto juvenile seedling-grown apple leaves in which the two layersof palisade cells comprised the majority (52-60%) of the leafvolume. The same morphological features, such as wide and lesspointed leaves, reduced stomatal density and stomatal index,and increased stomatal size that were previously reported fortree-grown tetraploid leaves were also expressed in vitro. Thus,causes of the stomatal deformation in tissue-cultured Rosaceaeare interpreted to be in part genetic and not purely environmental.Copyright1994, 1999 Academic Press Malus pumila Mill., apple, biotechnology, breeding, cryo-preservation, CO2, juvenile, low temperature-scanning electron microscopy (LT-SEM), micropropagation, ploidy, stomata, tissue-culture, transpiration  相似文献   

12.
In sweet potato root tissue, cinnamic acid 4-hydroxylase activityincreased markedly in response to cut injury, and reached amaximum after 1 day of incubation. The patterns of developmentand successive decline were similar to those for phenylalanineammonia-lyase activity. The development of both enzyme activitieswas inhibited by cycloheximide. The activity was strictly dependenton pH of the homogenizing and reaction media. The optimum pHof the reaction was 8.0. The respective Km values for trans-cinnamicacid and NADPH were 2.6?10-5 and 1.8?10-6M. The activity wasnot affected by ß-mercaptoethanol and the intermediatesand product of the polyphenol biosynthetic pathway. Carbon monoxideinhibited strongly the activity and its inhibition was partiallyprevented by light. Thus, the enzyme may be involved in thecytochrome P-450 mediated electron transport system. Studiesusing differential centrifugation and sucrose density gradientcentrifugation, showed that the intracellular distribution of4-hydroxylase activity differed distinctly from that of themitochondrial marker enzyme and was not in accord with thatof NADPH-cytochrome c reductase activity. 1This paper constitutes part 114 of the Phytopathological Chemistryof Sweet Potato with Black Rot and Injury. 2Present address: Laboratory of Biochemistry, Faculty of Agriculture,Nagoya University, Chikusa, Nagoya 464, Japan. (Received May 20, 1974; )  相似文献   

13.
The ureolytic enzyme in Chara was investigated. This enzymewas shown to be a urease with an unusually high affinity forurea(Km = 158 mmol m-3). Little inhibition of urease activitywas found when intact Chara cells were exposed to the ureaseinhibitors hydroxyurea, acetohydroxamic acid and N-ethylmaleimide,although there was some inhibition of urea uptake. The distribution of radioactivity amongst the amino acid, organicacid and sugar/neutral fractions, determined by ion-exchangechromatography, was very similar whether the Chara internodeswere exposed to 14C-urea or to H14CO3. This suggests that thefraction of the urea-carbon liberated by the urease as CO2 andretained by the cell is used in photosynthetic carbon-fixation.During the initial 15 min of 14C-urea uptake, label appearsin the vacuole only in the form of unmetabolized urea. Afterthis time a variety of labelled compounds appear in the vacuole,presumably reflecting the gradual movement of carbon-fixationproducts from the chloroplasts to the cytoplasm and thence intothe vacuole. Key words: Urea transport, metabolism, Chara, urease  相似文献   

14.
Leaves of the wilty pepper mutant, scabrous diminutive, accumulatemore Na+ than those of the normal genotype, when both grow inmedium containing N+. It seems that the regulation of Na+ fluxin the mutant root was modified. Net uptake of Na+ was muchhigher and efflux of 22Na+ was lower in the mutant roots thanin the normal ones. Two possible explanations for these differencesbetween mutant and normal plants are discussed, namely (a) achange in membrane permeability and (b) a change in the mechanismof Na+ extrusion.  相似文献   

15.
Pungent principles (Capsaicinoid(s)) were found to be produced in fruits of sweet pepper, Capsicum annuum L. var. grossum, during post-harvest ripening under continuous light. The initial formation was observed after 4 days’ ripening. After 7 days’ ripening, the capsaicinoids content in placenta increased to 12.9 μg per fruit, which was 2.5-fold of that in pericarp. No pungent principles were detected in fruits during ripening in the dark and in seeds under continuous light. In placenta, the formation of dihydrocapsaicin and nordihydrocapsaicin which are the vanillylamides of saturated branched fatty acids was higher than that of capsaicin which is the vanillylamide of an unsaturated one. Remarkable formation and accumulation of carotenoid were also observed during post-harvest ripening under continuous light.  相似文献   

16.
Two membrane fractions were obtained from 16%/26% and 34%/40%interfaces following discontinuous sucrose density gradientcentrifugation of a 10,000–80,000xg pellet from mung bean(Phaseolus mungo L.) roots. The ATPases in the fractions differedfrom each other in their sensitivity toward various inhibitors,activation with salts, dependence of activity on pH, and Kmfor ATP.Mg2+. Judging from their sensitivity toward inhibitors,the ATPases in the low and high density membranes are consideredmainly of tonoplast and plasma membrane origin, respectively.Both ATPases were activated by gramicidin D and nigericin. ATP-inducedquenching of quinacrine fluorescence in both fractions requiredMg2+ and permeant anions such as Cl and quenching wascollapsed by carbonylcyanide p-trifluoromethoxyphenyl hydrazone.The sensitivities of quenching to the inhibitors were essentiallythe same as those of ATPase activity in the membranes. Thesefindings suggest the involvement of ATPases in H+-pumping acrossa plasma membrane and tonoplast. (Received April 12, 1985; Accepted October 11, 1985)  相似文献   

17.
The nature of the electron transfer and terminal oxidase(s)in the sulfite-oxidizing system of Thiobacillus thiooxidnaswas studied in detail with various artificial electron donorsand inhibitors. Thionine, when reduced by ascorbate, was mosteffectively oxidized by whole cells and the particulate fractionof the various artificial electron donors. p-PD and TMPD werescarcely oxidized by either intact cells or the particulatefraction. The optimum pH of the thionine-oxidizing activity by the particulatefraction was 7.0 and that of the sulfite-oxidizing activitywas 6.8. The Km values for thionine and sulfite were 7.6x10–5Mand 1.6xl0–4M, respectively. Sulfite oxidase activity in the particulate fraction was markedlyinhibited by amytal, rotenone, quinacrine-HGl and 2,4-DNP. HOQNOinhibited sulfite oxidase activity completely, but had no effecton thionine oxidase activity. Cyanide- and azide-insensitive respirations were present inthe particulate fraction. Thionine oxidase activity was inhibitedphoto-irreversibly with carbon monoxide, while sulfite oxidaseactivity showed photo-reversible carbon monooxide inhibition.The presence of two carbon monoxide-binding pigments was confirmedin the particulate fraction by a spectrophotometric study. (Received May 16, 1975; )  相似文献   

18.
Membrane-bound ATPase associated with plasma membrane and solubleATPase associated with the cytoplasm were prepared from shootsof Salicornia pacifica var. utahensis by sucrose density gradientcentrifugation. The isolated ATPases were tolerant to high concentrationsof NaCl. The Km for membrane-bound ATPase was 1.75 mM and forsoluble ATPase, it was 1.4 mM. The relative effectiveness ofdivalent cations for stimulation of membrane-bound ATPase wasMg2+>Fe2+>Mn2+>Co2+>Cu2+. Soluble ATPase activitywas stimulated by Ba2+>Ca2+>Mg2+ and was inhibited byCu2+, Zn2+, Co2+ and Fe2+. The compounds N,N1-dicyclohexylcarbodiimide,NaF and ADP, did inhibit the ATPases but ouabain, triphenyltinhydroxide, sodium azide, indoleacetic acid and abscisic aciddid not inhibit the ATPases from s. pacifica var. utahensis. 1 Present address: Department of Biology, Kong-Ju National College,Kong-Ju, Korea. (Received April 1, 1980; )  相似文献   

19.
Carbon Partitioning and Export in Mature Leaves of Pepper (Capsicum annuum)   总被引:1,自引:0,他引:1  
The partitioning of recently fixed carbon by mature pepper leaveshas been examined over a 10 h photoperiod using a constant specificradioactivity 14CO2 labelling technique. Changes in the ratesof carbon partitioning into export, starch, sucrose and hexoseswere examined following changes in irradiance during the photoperiod.Leaves grown under 80 W m–2 PAR were exposed to this irradiancefor the first 4 h of the photoperiod then the iiradiance wasdecreased. Leaves accumulated sufficient reserves in the first4 h to maintain export at the initial rate (approximately 20µg carbon cm–2 leaf h–1) over the following6 h of the photoperiod when the net photosynthesis rate (Pn)was decreased to 10% of the initial rate by the decreased irradiance.Export was initially maintained by the depletion of sucroseand hexose and then by carbon from the degradation of starchin the light. If leaves were exposed to low irradiance at the beginning ofthe photoperiod, then the export rate was linearly related tothe Pn during that period. When Pn exceeded that required tomaintain an export rate of approximately 20 µg carboncm–2 h–1, then more carbon was partitioned intostarch. At low initial irradiance, a greater proportion of photosynthatewas partitioned into export rather than starch and at high initialirradiancc the reverse occurred. There was a linear relationship between starch accumulationrate and Pn for all leaves but the relationship between Pn andexport rate was only significant for leaves with low levelsof reserve carbon. The results show that mature pepper leaves subjected to differentirradiances maintain constant export rates through alterationsof carbon partitioning. Export at low Pn is maintained at theexpense of sugar and starch reserves, with partitioning in highirradiance being predominantly to starch. Key words: Carbon partitioning, Starch, Export, Pepper (Capsicum annuum L.)  相似文献   

20.
FLETCHER  J. 《Annals of botany》1983,52(1):31-37
The central vacuole system of oogonia of Saprolegnia terrestrisfrom Ca2+-sufficient cultures was fully enlarged prior to theformation of oosphere initials, which did not involve cleavagevesicles. In oogonia with fully-enlarged central vacuole systems,subsidiary vacuoles at the periphery of the system sometimescontained dense bodies, and dense-body profiles were sometimespresent within sections of the central vacuole system itself.As the central vacuole system enlarged, volume densities ofdense-body vesicles, peripheral vacuoles, lipid bodies and thecytoplasmic matrix decreased relative to total oogonial volume(peripheral protoplasm volume plus central vacuole volume),while the volume density of nuclei increased and that of mitochondriaremained constant. Relative to the peripheral protoplasm only,volume densities of dense-body vesicles, lipid bodies and mitochondriaincreased and volume densities of peripheral vacuoles and ofthe cytoplasmic matrix decreased, while the volume density ofnuclei increased during central vacuole enlargement but subsequentlydecreased during formation of oosphere initials. Under conditionsof Ca2+ deficiency, the volume densities of mitochondria andof the cytoplasmic matrix were significantly increased, whilethat of lipid bodies was significantly decreased, at early stagesof oogonial development; the volume densities of other organelleswere not significantly altered at any stage. Saprolegnia terrestris, oogonia, development, calcium, ultrastructure, stereology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号