首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether ultraviolet-B (UVB) irradiation (6 kJ/m2) alters cytokine production and other innate immune reactions by murine peritoneal macrophages and peripheral neutrophils. Along with these experiments, serum IgG levels were also assessed. In addition, using scanning electron microscopy (SEM) we observed macrophages that had been exposed to UVB in vitro. Results showed that UVB irradiation: (1) decreased IL-12 production while increasing IL-1alpha secretion from macrophages, but had no effect on IL-1alpha from neutrophils; (2) suppressed phagocytosis of macrophages but not of neutrophils; (3) diminished active oxygen production of macrophages but not of neutrophils; (4) had no effect on serum IgG levels; and (5) caused significant cell destruction of macrophages in vitro. These results suggested: (1) that UVB irradiation could induce characteristic suppression of innate immunity; (2) that innate cellular immunity was more susceptible to the effects of UVB irradiation than humoral immunity.  相似文献   

2.
RhoE, a p53 target gene, was identified as a critical factor for the survival of human keratinocytes in response to UVB. The Rho family of GTPases regulates many aspects of cellular behavior through alterations to the actin cytoskeleton, acting as molecular switches cycling between the active, GTP-bound and the inactive, GDP-bound conformations. Unlike typical Rho family proteins, RhoE (also known as Rnd3) is GTPase-deficient and thus expected to be constitutively active. In this study, we investigated the response of cultured human keratinocyte cells to UVB irradiation. RhoE protein levels increase upon exposure to UVB, and ablation of RhoE induction through small interfering RNA resulted in a significant increase in apoptosis and a reduction in the levels of the pro-survival targets p21, Cox-2, and cyclin D1, as well as an increase of reactive oxygen species levels when compared with control cells. These data indicate that RhoE is a pro-survival factor acting upstream of p38, JNK, p21, and cyclin D1. HaCat cells expressing small interfering RNA to p53 indicate that RhoE functions independently of its known associates, p53 and Rho-associated kinase I (ROCK I). Targeted expression of RhoE in epidermis using skin-specific transgenic mouse model resulted in a significant reduction in the number of apoptotic cells following UVB irradiation. Thus, RhoE induction counteracts UVB-induced apoptosis and may serve as a novel target for the prevention of UVB-induced photodamage regardless of p53 status.  相似文献   

3.
Overproduction of inflammatory mediators by macrophages in response to Gram-negative LPS has been implicated in septic shock. Recent reports indicate that three membrane-associated proteins, CD14, CD11b/CD18, and Toll-like receptor (TLR) 4, may serve as LPS recognition and/or signaling receptors in murine macrophages. Therefore, the relative contribution of these proteins in the induction of cyclooxygenase 2 (COX-2), IL-12 p35, IL-12 p40, TNF-alpha, IFN-inducible protein (IP)-10, and IFN consensus sequence binding protein (ICSBP) genes in response to LPS or the LPS-mimetic, Taxol, was examined using macrophages derived from mice deficient for these membrane-associated proteins. The panel of genes selected reflects diverse macrophage effector functions that contribute to the pathogenesis of septic shock. Induction of the entire panel of genes in response to low concentrations of LPS or Taxol requires the participation of both CD14 and TLR4, whereas high concentrations of LPS or Taxol elicit the expression of a subset of LPS-inducible genes in the absence of CD14. In contrast, for optimal induction of COX-2, IL-12 p35, and IL-12 p40 genes by low concentrations of LPS or by all concentrations of Taxol, CD11b/CD18 was also required. Mitigated induction of COX-2, IL-12 p35, and IL-12 p40 gene expression by CD11b/CD18-deficient macrophages correlated with a marked inhibition of NF-kappa B nuclear translocation and mitogen-activated protein kinase (MAPK) activation in response to Taxol and of NF-kappa B nuclear translocation in response to LPS. These findings suggest that for expression of a full repertoire of LPS-/Taxol-inducible genes, CD14, TLR4, and CD11b/CD18 must be coordinately engaged to deliver optimal signaling to the macrophage.  相似文献   

4.
The hamster IgM mAb 5D3 is specific for an 73-kDa LPS receptor on murine leukocytes. This mAb inhibits binding of radiolabeled LPS to splenocytes and acts as an agonist for induction of LPS-mediated changes in macrophage function. Resident peritoneal macrophages treated with IFN-gamma and mAb 5D3 developed potent cytotoxic activity against tumor cells. Cells treated with IFN-gamma or mAb 5D3 alone were inactive. Macrophage cytotoxic activity induced by IFN-gamma and mAb 5D3 was inhibited by NGMMLA and coincident with high levels of NO2-released into culture fluids. These data show that mAb 5D3 serves as an effective trigger signal for induction of cytotoxic activity with IFN-gamma-primed macrophages. Indeed, mAb 5D3 exactly mimicked the effects of LPS in these same systems. Unlike LPS, effects of mAb 5D3 on induction of macrophage cytotoxic activity and production of nitrogen oxides was abrogated after boiling, and not affected by addition of polymyxin B. The effects of LPS and mAb 5D3 as a trigger signal for IFN-gamma-primed macrophages were associated with production of TNF activity in culture fluids and inhibited by mAb against rTNF-alpha. Expression of class II MHC on macrophages induced by IFN-gamma treatment was suppressed by both LPS and mAb 5D3. These suppressive effects of LPS and mAb 5D3 were not affected by NGMMLA or mAb against rTNF-alpha. Finally, macrophages treated with LPS or mAb 5D3 before exposure to IFN-gamma and LPS or mAb 5D3 did not develop cytotoxic activity or high levels of NO2- in the culture fluids. These same cells developed both effector activities after addition of rTNF-alpha. These results in toto identify the 73-kDa protein as a receptor that mediates LPS-induced changes in macrophage effector function. The mAb 5D3 serves as a specific and defined reagent agonist for analysis of LPS receptor-linked change.  相似文献   

5.
Divergent response to LPS and bacteria in CD14-deficient murine macrophages   总被引:10,自引:0,他引:10  
Gram-negative bacteria and the LPS constituent of their outer membranes stimulate the release of inflammatory mediators believed to be responsible for the clinical manifestations of septic shock. The GPI-linked membrane protein, CD14, initiates the signaling cascade responsible for the induction of this inflammatory response by LPS. In this paper, we report the generation and characterization of CD14-null mice in which the entire coding region of CD14 was deleted. As expected, LPS failed to elicit TNF-alpha and IL-6 production in macrophages taken from these animals, and this loss in responsiveness is associated with impaired activation of both the NF-kappaB and the c-Jun N-terminal mitogen-activated protein kinase pathways. The binding and uptake of heat-killed Escherichia coli, measured by FACS analysis, did not differ between CD14-null and wild-type macrophages. However, in contrast to the findings with LPS, whole E. coli stimulated similar levels of TNF-alpha release from CD14-null and wild-type macrophages at a dose of 10 bioparticles per cell. This effect was dose dependent, and at lower bacterial concentrations CD14-deficient macrophages produced significantly less TNF-alpha than wild type. Approximately half of this CD14-independent response appeared to be mediated by CD11b/CD18, as demonstrated by receptor blockade using neutrophil inhibitory factor. An inhibitor of phagocytosis, cytochalasin B, abrogated the induction of TNF-alpha in CD14-deficient macrophages by E. coli. These data indicate that CD14 is essential for macrophage responses to free LPS, whereas other receptors, including CD11b/CD18, can compensate for the loss of CD14 in response to whole bacteria.  相似文献   

6.
Ultraviolet B (UVB) irradiation causes cell death by apoptosis in murine fibroblast cells. Tumor necrosis factor-alpha (TNF-alpha) is also a well known inducer of apoptosis, although the physiological significance of this activity is poorly understood. We investigated the effects of pretreatment with UVB (312 nm) on TNF-alpha-induced apoptosis in murine fibroblast cells. UVB enhanced susceptibility to cell death by TNF-alpha in a dose-dependent manner. UVB but not TNF-alpha induced the expression of TNF receptor type-1 (TNFR-1) and type-2 (TNFR-2) in a dose-dependent manner. Expression of Fas (CD95) and Fas-ligand (Fas-L), and significant DNA fragmentation were observed in the cells that died. These results suggest that UVB irradiation modulates susceptibility to TNF-alpha-induced apoptosis through the induction of TNFRs, Fas, and Fas-L in murine fibroblasts.  相似文献   

7.
UVB irradiation can cause considerable changes in the composition of cells in the skin and in cutaneous cytokine levels. We found that a single exposure of normal human skin to UVB induced an infiltration of numerous IL-4(+) cells. This recruitment was detectable in the papillary dermis already 5 h after irradiation, reaching a peak at 24 h and declining gradually thereafter. The IL-4(+) cells appeared in the epidermis at 24 h postradiation and reached a plateau at days 2 and 3. The number of IL-4(+) cells was markedly decreased in both dermis and epidermis at day 4, and at later time points, the IL-4 expression was absent. The IL-4(+) cells did not coexpress CD3 (T cells), tryptase (mast cells), CD56 (NK cells), and CD36 (macrophages). They did coexpress CD15 and CD11b, showed a clear association with elastase, and had a multilobed nucleus, indicating that UVB-induced infiltrating IL-4(+) cells are neutrophils. Blister fluid from irradiated skin, but not from control skin, contained IL-4 protein as well as increased levels of IL-6, IL-8, and TNF-alpha. In contrast to control cultures derived from nonirradiated skin, a predominant type 2 T cell response was detected in T cells present in primary dermal cell cultures derived from UVB-exposed skin. This type 2 shift was abolished when CD15(+) cells (i.e., neutrophils) were depleted from the dermal cell suspension before culturing, suggesting that neutrophils favor type 2 T cell responses in UVB-exposed skin.  相似文献   

8.
The use of ultraviolet B light (UVB) has been proven to be highly effective for treatment of various inflammatory skin diseases, but UVB phototherapy is limited by its carcinogenic side effects. It is necessary to uncover effectors that augment UVB so that similar or improved efficacy can be obtained with lower UVB doses. We found that low frequency, low intensity electromagnetic fields (EMFs) can act as such an effector and synergistically inhibit T lymphocyte proliferation. We first characterized the effects of UVB on Jurkat cells, a model for cutaneous T lymphocytes, and determined UVB's dose dependent inhibition of cell proliferation and induction of apoptosis. Cells exposed to a sublethal UVB dose retained their sensitivity to UVB, but repetitive irradiation seemed to cause accumulation of delayed DNA damage. We then exposed cells to combinations of UVB plus EMFs and found that 100 Hz, 1 mT EMFs decrease DNA synthesis of UVB-activated Jurkat cells by 34 +/- 13% compared to UVB alone. The decrease is, however, most effective when relatively high UVB doses are employed. Since EMFs alone had only a very weak inhibitory effect (10 +/- 2%), the data suggest that EMFs augment the cell killing effects of UVB in a synergistic way. These findings could provide the basis for development of new and improved clinical phototherapy protocols.  相似文献   

9.
The interaction of LPS (endotoxin) with the CD14-TLR4 receptor complex modulates the host innate immune response. Several studies using partial structures of LPS have suggested that TLR4 determines the ligand specificity of this complex, and that CD14 indiscriminately serves to deliver the ligand to TLR4. This conclusion has been made despite observations that the response of TLR4(+/+),CD14(-/-) macrophages to LPS is very weak. To determine whether CD14 itself plays a role in specific ligand recognition, the influences of various partial structures of LPS on induction of the proinflammatory cytokine, TNF, by CD14(+/+) and CD14(-/-) macrophages were compared. These studies show that the ligand specificities of CD14(+/+) and CD14(-/-) macrophages are very different. When CD14 is present, the receptor complex shows exquisite specificity for smooth LPS, the major form expressed by Gram-negative bacteria; however, as increasing amounts of carbohydrate are removed from smooth LPS, the sensitivity of CD14(+/+) macrophages decreases as much as 500-fold. In contrast, CD14(-/-) macrophages are unable to distinguish between smooth LPS and its various partial structures. Furthermore, CD14(-/-) macrophages are 150,000-fold less sensitive than CD14(+/+) macrophages to smooth LPS. A similar ability to distinguish the differing LPS structures of various bacteria such as Bacteroides fragilis and Salmonella abortus are observed for CD14(+/+), but not CD14(-/-), macrophages. Thus, CD14(+/+), but not CD14(-/-), macrophages are highly sensitive to stimulation by natural forms of LPS and show the ability to distinguish between various LPS ligands, consistent with CD14 being a highly specific receptor.  相似文献   

10.
The 52 kD myeloid membrane glycoprotein CD14 represents the receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein (LBP); it is involved in LPS induced tumor necrosis factor-alpha production. Expression of CD14 increases in monocytes differentiating into macrophages, and it is reduced by rIFNg in monocytes in vitro. In the present study CD14 membrane antigen expression was investigated in cultures of human mononuclear leucocytes (PBL), in elutriated, purified monocytes, and in blood monocyte derived Teflon cultured macrophages. Cells were incubated for 15 or 45 h with rIL-1, rIL-2, rIL-3, rIL-5, rIL-6, rTNFa, rGM-CSF, rM-CSF, rTGFb1, rIFNa, lipopolysaccharide (LPS), and, as a control, rIFNg. The monoclonal antibodies Leu-M3 and MEM 18 were used for labelling of CD14 antigen by indirect immunofluorescence and FACS analysis of scatter gated monocytes or macrophages. IFNg concentrations were determined in PBL culture supernatants by ELISA. rIFNa and rIL-2 reduced CD14 in 15 and 45 h PBL cultures, an effect mediated by endogenous IFNg, since it was abolished by simultaneous addition of an anti-IFNg antibody. rIFNa and rIL-2 were ineffective in purified monocytes or macrophages. rIL-4 strongly reduced CD14 in PBL and purified monocytes after 45 h, whereas in macrophages the decrease was weak, although measurable after 15 h. The other cytokines investigated did not change CD14 antigen expression. Cycloheximide alone reduced CD14, but when added in combination with rIFNg the effect on CD14 downregulation was more pronounced. The effect of rIFNg on CD14 in PBL cultures was dose-dependently inhibited by rIL-4 and this inhibition is probably due to an IL-4 mediated blockade of IFNg secretion. LPS at a low dose increased CD14, at a high dose it produced a variable decrease of CD14 in PBL, which was probably due to LPS induced IFNg secretion. LPS strongly enhanced CD14 in 45 h cultures of purified monocytes. The results, showing that CD14 antigen expression is upregulated by LPS and downregulated by rIFNg and rIL-4, suggest that the LPS-LBP receptor is involved in the feedback response of IFNg and IL-4 to LPS stimulation.  相似文献   

11.
Epidermal keratinocytes are able to produce 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and induce vitamin D activity upon UVB irradiation. To find out whether this property is keratinocyte specific, we investigated this characteristic in two other cell types, namely intestinal CaCo-2 cells and the macrophage-like differentiated THP-1 cells. THP-1 macrophages and preconfluent CaCo-2 cells contain the vitamin D receptor (VDR), possess 25-hydroxylase (CYP2R1 and CYP27A1) and 1alpha-hydroxylase (CYP27B1) activity, and survive the low UVB doses essential for vitamin D3 photoproduction. Upon irradiation, 24-hydroxylase (CYP24) mRNA is induced in both cell types pretreated with the sterol Delta7-reductase inhibitor BM15766 whereby the 7-dehydrocholesterol (7-DHC) content was increased. Transfection studies in CaCo-2 cells with a vitamin D response element-containing construct revealed the involvement of the VDR in this UVB-dependent CYP24 induction. The CYP24 inducing activity in BM15766-pretreated UVB-irradiated CaCo-2 cells and THP-1 macrophages was identified as 1,25(OH)2D3 by combined high-performance liquid chromatography radioimmunoassay. Addition of vitamin D binding protein to the CaCo-2 cells attenuated UVB-induced CYP24 induction suggesting the possibility of a paracrine or autocrine role for the photoproduced 1,25(OH)2D3. In conclusion, preconfluent CaCo-2 cells and THP-1 macrophages are able to induce vitamin D activity upon UVB irradiation and hence combine all parts of the vitamin D photoendocrine system, a characteristic which is therefore not keratinocyte specific.  相似文献   

12.
Ultraviolet B (UVB) radiation may activate or deteriorate cultured human epidermal melanocytes, depending on the doses and culture conditions. It is also reported that cultured human epidermal melanocytes derived from different pigmentary phenotypes showed different responses to UVB radiation. In this study, we examined whether apoptosis of melanocytes can be induced by physiologic doses of UVB irradiation using cultured human epidermal melanocytes derived from oriental males of skin types III and IV. Propidium iodide staining for DNA condensation and flow cytometric analyses demonstrated the apoptotic cell death of melanocytes following UVB irradiation (0-30 mJ/cm2). The levels of p53, Bax, and Bcl-2, determined by immunoblotting, revealed a dose-dependent increase in p53 and Bax, but the level of Bcl-2 remained unchanged. Confocal microscopic examination showed that Bax moved from a diffuse to a punctate distribution after UVB irradiation. However, there were no changes in the pattern of distribution of Bcl-2. These data suggest that the high constitutional level of Bcl-2 may protect melanocytes from UVB-induced injury, and that apoptotic death of melanocytes may be induced by the elevation and redistribution of Bax.  相似文献   

13.
Ultraviolet B (UVB) radiation may activate or deteriorate cultured human epidermal melanocytes, depending on the doses and culture conditions. It is also reported that cultured human epidermal melanocytes derived from different pigmentary phenotypes showed different responses to UVB radiation. In this study, we examined whether apoptosis of melanocytes can be induced by physiologic doses of UVB irradiation using cultured human epidermal melanocytes derived from oriental males of skin types III and IV. Propidium iodide staining for DNA condensation and flow cytometric analyses demonstrated the apoptotic cell death of melanocytes following UVB irradiation (0–30 mJ/cm2). The levels of p53, Bax, and Bcl‐2, determined by immunoblotting, revealed a dose‐dependent increase in p53 and Bax, but the level of Bcl‐2 remained unchanged. Confocal microscopic examination showed that Bax moved from a diffuse to a punctate distribution after UVB irradiation. However, there were no changes in the pattern of distribution of Bcl‐2. These data suggest that the high constitutional level of Bcl‐2 may protect melanocytes from UVB‐induced injury, and that apoptotic death of melanocytes may be induced by the elevation and redistribution of Bax.  相似文献   

14.
Fulminant meningococcal sepsis (FMS) is considered the prototypical Gram-negative sepsis. Lipopolysaccharide (LPS) is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). However, there is increasing evidence that LPS is not the sole toxic element of meningococci. The aim of the present study was to determine the role of CD14 and TLR4 in pro-inflammatory cytokine induction by meningococci. To this end, cytokine induction by isolated meningoccal LPS, wild-type N. meningitidis H44/76 (LPS+-meningococci) matched for concentrations of LPS and LPS-deficient N. meningitidis H44/76lpxA (LPS - -meningococci) was studied in human PBMCs and murine peritoneal macrophages (PMs). Pre-incubation of PBMCs with WT14, a monoclonal antibody against CD14, abolished TNF-alpha and IL-1beta induction by E. coli LPS, while cytokine induction by meningococcal LPS was only partially inhibited. When LPS+- and LPS - -meningococci at higher concentrations were used as stimuli, anti-CD14 had a minimal effect. In C3H/HeJ murine PMs, devoid of a functional TLR4, minimal IL-1alpha, IL-6 and TNF-alpha production was seen after stimulation with 10 ng/mL E. coli or meningococcal LPS. However, at higher concentrations (1000 ng LPS/mL) the production of TNF-alpha, but not IL-1alpha or IL-6, occurred also independently of TLR4. The expression of a functional TLR4 in murine PMs had no effect on the cytokine induction by LPS+- or LPS - -meningococci. It is concluded that pro-inflammatory cytokine induction by N. meningitidis can occur independently of CD14 and TLR4.  相似文献   

15.
16.
Ultraviolet B (UVB) irradiation causes cell death by apoptosis in murine fibroblast cells. Tumor necrosis factor-α (TNF-α) is also a well known inducer of apoptosis, although the physiological significance of this activity is poorly understood. We investigated the effects of pretreatment with UVB (312 nm) on TNF-α-induced apoptosis in murine fibroblast cells. UVB enhanced susceptibility to cell death by TNF-α in a dose-dependent manner. UVB but not TNF-α induced the expression of TNF receptor type-1 (TNFR-1) and type-2 (TNFR-2) in a dose-dependent manner. Expression of Fas (CD95) and Fas-ligand (Fas-L), and significant DNA fragmentation were observed in the cells that died. These results suggest that UVB irradiation modulates susceptibility to TNF-α-induced apoptosis through the induction of TNFRs, Fas, and Fas-L in murine fibroblasts.  相似文献   

17.
UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.  相似文献   

18.
Thrombomodulin (TM) is highly expressed in endothelial cells and acts as a natural anticoagulation factor to maintain circulation homeostasis. TM is an interesting molecule with many physiological functions, including anti-inflammation, anti-thrombosis, and carcinogenesis inhibition. TM can also be detected on the spinous layer of epidermal keratinocytes. However, the role of epidermal TM is still under investigation. In this study, we investigated keratinocyte TM expression and regulation in response to sub-cytotoxic ultraviolet B (UVB) irradiation. Oxidative stress was assessed with DCF and the results revealed that UVB irradiation significantly and dose-dependently augmented reactive oxygen species (ROS) production in HaCaT cells. In addition, low-dose UVB irradiation decreased TM mRNA and protein levels. Blocking ROS production and ERK activation prevented UVB-induced TM down-regulation. The nuclear p53 accumulation and TM promoter binding was observed within 3 h after UVB exposure. Small interfering RNA-mediated p53 knockdown disrupted the UVB-mediated TM protein down-regulation. Our study demonstrates that UVB irradiation results in ROS accumulation and ERK activation, which causes the nuclear p53 accumulation and TM promoter binding to inhibit TM expression. This study provides novel evidence demonstrating that p53 serves as a key regulator of keratinocyte TM expression.  相似文献   

19.
Although mainly expressed in neuronal cells, lipocalin-type PGD synthase (L-PGDS) is detected in the macrophages infiltrated to atherosclerotic plaques. However, the regulation and significance of L-PGDS expression in macrophages are unknown. Here, we found that treatment of macrophages with bacterial endotoxin (LPS) or Pseudomonas induced L-PGDS expression. Epigenetic suppression of L-PGDS expression in macrophages blunted a majority of PGD(2) produced after LPS treatment. Chromatin immunoprecipitation assays show that L-PGDS induction was regulated positively by AP-1, but negatively by p53. L-PGDS expression was detected in whole lung and alveolar macrophages treated with LPS or Pseudomonas. L-PGDS overexpressing transgenic mice improved clearance of Pseudomonas from the lung compared with nontransgenic mice. Similarly, intratracheal instillation of PGD(2) enhanced removal of Pseudomonas from the lung in mice. In contrast, L-PGDS knockout mice were impaired in their ability to remove Pseudomonas from the lung. Together, our results identify induction of L-PGDS expression by inflammatory stimuli or bacterial infection, the regulatory mechanism of L-PGDS induction, and the protective role of L-PGDS expression in host immune response. Our study suggests a potential therapeutic usage of L-PGDS or PGD(2) against Pseudomonas pneumonia.  相似文献   

20.
LPS induces in bone marrow macrophages the transient expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). Because MKP-1 plays a crucial role in the attenuation of different MAPK cascades, we were interested in the characterization of the signaling mechanisms involved in the control of MKP-1 expression in LPS-stimulated macrophages. The induction of MKP-1 was blocked by genistein, a tyrosine kinase inhibitor, and by two different protein kinase C (PKC) inhibitors (GF109203X and calphostin C). We had previously shown that bone marrow macrophages express the isoforms PKC beta I, epsilon, and zeta. Of all these, only PKC beta I and epsilon are inhibited by GF109203X. The following arguments suggest that PKC epsilon is required selectively for the induction of MKP-1 by LPS. First, in macrophages exposed to prolonged treatment with PMA, MKP-1 induction by LPS correlates with the levels of expression of PKC epsilon but not with that of PKC beta I. Second, G?6976, an inhibitor selective for conventional PKCs, including PKC beta I, does not alter MKP-1 induction by LPS. Last, antisense oligonucleotides that block the expression of PKC epsilon, but not those selective for PKC beta I or PKC zeta, inhibit MKP-1 induction and lead to an increase of extracellular-signal regulated kinase activity during the macrophage response to LPS. Finally, in macrophages stimulated with LPS we observed significant activation of PKC epsilon. In conclusion, our results demonstrate an important role for PKC epsilon in the induction of MKP-1 and the subsequent negative control of MAPK activity in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号