首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific activity of cathepsin B-like, cathepsin D-like, and leucine aminopeptidase enzymes was measured in dormant, aging, and germinating spores of wild-type and mutant Dictyostelium discoideum.The activity of leucine aminopeptidase was relatively constant during spore aging and spore germination. The level of cathepsin D-like activity was highest in young dormant spores but decreased during germination or aging.The level of cathepsin B-like activity remained constant in wild-type spores which were aged for 13 days. The dormant spores of spontaneous germination mutants initially contained low levels of cathepsin B-like activity which increased during aging. Thus, there was no correlation between the level of endogenous cathepsin B activity and the ability to be autoactivated or heat-activated. The level of cathepsin B-like activity does not have a role in the generation of energy for the swelling stage of germination. Finally, the combined level of endogenous and exogenous cathepsin B activity increased more than 20-fold during the emergence of myxamoebae suggesting that the enzyme(s) may play a role at this development stage of germination.  相似文献   

2.
In the presence of germination signals, dormant spores of Dictyostelium discoideum rapidly germinate to start a new life cycle. Previously we have shown that half of the actin molecules in spores are maintained in a tyrosine-phosphorylated state, and a decline of the actin phosphorylation levels is a prerequisite for spore swelling. In this study, we have established d-glucose as a trigger molecule for the actin dephosphorylation. Present in a nutrient germination medium, d-glucose both may act as a trigger molecule and/or may serve as a substrate within a pathway for actin dephosphorylation depending upon spore age. However, the glucose-induced actin dephosphorylation was insufficient for spores to swell. Other factors in the nutrient medium were required for complete germination of young spores aged 1 to 5 days. In contrast, dispersion in nonnutrient buffer was necessary and sufficient for a decline of actin phosphorylation levels and even the emergence of amoebae in older spores (6 days and beyond). Moreover, the dephosphorylation pathway in the older spores was independent of energy production. We propose that the diversification of the actin dephosphorylation pathway may enable spores to increase their probability of germination upon spore aging.  相似文献   

3.
4.
mRNA specific to cDNA clone pLK109 is present in Dictyostelium discoideum spores, increases about two- to threefold at 0.5 to 1 h during spore germination, and then rapidly decreases. The mRNA is not detectable in vegetative cells or in early multicellular development on filters, but is present late during development, approximately at the time of sporulation. 109 mRNA in spores is 700 nucleotides in length but this is processed during germination by shortening of the poly(A) tail to about 600 nucleotides at 1 to 1.5 hours. pLK109 is a member of a multigene family containing three separate genes, and we have isolated and sequenced all of them. All three sequences code for deduced proteins of 127 amino acid residues, with only a few amino acid differences among them. Gene 1 represents the "transcribed" gene, since all 33 cDNAs we isolated are identical with the cDNA pLK109 and the coding region of this gene. Other open reading frames are in close proximity to each of the 109 sequences. About 200 base-pairs 3' to the gene 1 109 sequence is an open reading frame in the opposite orientation. Gene 2 fragment contains a sequence that codes for a protein similar to trypanosome alpha-tubulin 728 base-pairs 5' to the 109 sequence. Gene 3 fragment possesses two additional putative coding regions, one 5' and another 3' to the 109 gene. There is a remarkable similarity between the 5' upstream regions of all three genes. Each possesses a normal Dictyostelium TATA box and the usual T stretch. In addition, there are many other portions of about 400 to 500 base-pairs of the 5' regions that are either identical for long stretches or very similar.  相似文献   

5.
mRNA decay was studied during spore germination in Dictyoselium discoideum by the use of three previously isolated cDNA clones, pLK109, pLK229, and pRK270, which are specific for mRNAs developmentally regulated during spore germination. The half-life of a constitutive mRNA, pLK125, which is present throughout germination, growth, and development, as also determined. Nogalamycin, a DNA-intercalating compound, was used to inhibit RNA synthesis. Total RNA was isolated at intervals after addition of the drug, and the decay of mRNAs specific for the cDNA clones was determined by both Northern blot and RNA dot hybridization. If nogalamycin was added immediately after activation of dormant spores, neither pLK229 nor pLK109 mRNA decayed, but pLK125 mRNA did decay. Although pLK109 mRNA did not decay under these conditions, the RNA was smaller 1 h after activation than in dormant spores, indicating that it was processed normally. At 1 h after activation, pLK229-, pLK125-specific mRNAs decayed exponentially, with half-lives of 24, 39, and 165 min, respectively. Under the same conditions, decay of pLK109-specific mRNA was biphasic. Thirty-eight percent of the mRNA decayed with a half-life of 5.5 min, and the remainder decayed with a half-life of 115 min. It seems likely that nogalamycin inhibits the synthesis of an unstable component of the mRNA degradative pathway which is needed continuously for the decay of pLK109 mRNA. By extrapolating the curve representing the rapidly decaying component, a half-life of 18 min was calculated for pLK109-specific mRNA. The mRNAs developmentally regulated during spore germination have half-lives shorter than that of the constitutive messenger and shorter than the average half-life of 3 to 4 h previously determined for total Dicyostelium polyadenylated mRNA.  相似文献   

6.
After activation, wild-type Dictyostelium discoideum spores germinate rapidly and synchronously in phosphate buffer as well as in complex medium. Mutants defective in spore germination were isolated and characterized. These mutants (called grm) did not germinate normally in buffer but did germinate in complex medium in the presence of bacteria. One mutant (grm B) swelled normally, but amoebae were not formed. Another mutant (grm F) swelled and germinated poorly in buffer. The members of the third group of mutants (A, C, D, and E) did not swell or give rise to amoebae in buffer.  相似文献   

7.
8.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

9.
Spore germination in the slime mold Dictyostelium discoideum was used as a model to study the developmental regulation of protein and mRNA synthesis. Changes in the synthesis of these macromolecules occur during the transition from dormant spore to amoebae. The study of the mechanisms which regulate the quantity and quality of protein synthesis can best be accomplished with cloned genes. cDNA clones which hybridized primarily with mRNAs from only spores or germinating spores and not with growing amoebae were collected. Three such clones, denoted pLK109, pLK229, and pRK270, were isolated and had inserts of approximately 500, 1,200, and 690 base pairs, respectively. Southern blot hybridization experiments suggested that each of the genes is present in multiple copies in the D. discoideum genome. RNA blot hybridizations were performed to determine the sizes of the respective mRNAs and their developmental regulation. The mRNA that hybridized to pLK109 DNA was present predominantly in spores and at 1 h after germination but was absent in growing amoebae. Its concentration dramatically dropped at 3 h. The mRNA present in spores is apparently larger (approximately 0.5 kilobase) than in the later stages of germination (0.4 kilobase), indicating processing of the RNA during germination. The mRNA that hybridized to pLK229 DNA was approximately 1.0 kilobase and was present in very low amounts during growth. Its concentration rose until 1 h after spore germination and decreased thereafter. pRK270-specific RNA was approximately 2.7 kilobases and was found predominantly at 1 h after germination. It was present in lower concentrations at 2 and 3 h after germination and was absent in spores and amoebae. In vitro translation of mRNA selected from 1-h polyadenylated RNA which was hybridized to pLK109 or pLK229 DNA gave proteins of molecular weights consistent with the sizes of the mRNAs as determined by the RNA blot analysis.  相似文献   

10.
Abstract RasG protein levels in dormant and germinating spores of Dictyostelium discoideum strains JC1 and SG1 were estimated by Western blotting. Ras Glevels were very low in dormant spores and remained low during the lag period, regardless of whether spores were heat activated or treated with autoactivator during the early stages of spore germination. RasG levels increased late during spore swelling just prior to the emergence stage of germination. These data are consistent with a requirement for RasG during vegetative growth.  相似文献   

11.
Germ tubes from spores ofStreptomyces were very sensitive to lysozyme attack. A good yield of stable protoplasts was obtained 30 min after addition of the enzyme, making the growth of the microorganism in a high-glycine-content medium unnecessary. Physiologically unaltered, stable protoplasts, which are formed from cells in the same stage of their developmental cycle, may be obtained in the presence of lysozyme. After protoplast release, abundant membranous structures were observed inside the empty walls.  相似文献   

12.
Discadenine, 3-(3-amino-3-carboxypropyl)-6-(3-methyl-2-butenylamino)purine, a spore germination inhibitor of the cellular slime mold Dictyostelium discoideum showed cytokinin activity in the tobacco callus bioassay.  相似文献   

13.
14.
Ribosome synthesis was studied in spores at the swelling stage and compared with freshly emerged and logarithmically growing vegetative amoebae. During the swelling stage of spore germination, ribosome synthesis was abnormal. Newly made ribosomes accumulated unequal amounts of 26S and 17S rRNAs. The stoichiometric ratio 26S:17S was 0.5 in swelling spores, compared with 0.9 in amoebae. The relative level of pre-rRNA persisting in the nucleus was apparently 2- to 3-fold higher in swelling spores than in amoebae. All of the known ribosomal proteins, except for a few, were made during the swelling stage and were associated with the newly made ribosomes in expected amounts. Analysis of the 2'-O-methyl ribose content in the newly made rRNAs suggest that methylation was defective in swelling spores. Compared with growing amoebae, the methyl content was 30 and 64% less in 26S and 17S RNAs from the swelling stage, respectively. It is suggested that undermethylation could be partly responsible for the differential accumulation of newly made 26S and 17S RNAs during the early stages of spore germination in Dictyostelium discoideum.  相似文献   

15.
Summary Germinating spores of the fungus Botryodiplodia theobromae incorporated guanine-8-C14 into both the nuclear DNA and mitochondrial DNA fractions. Ethidium bromide inhibited the synthesis of mitochondrial DNA without having a significant effect on nuclear DNA synthesis or on the rate and extent of spore germination. Rates of leucine and uracil incorporation and of oxygen uptake were not significantly affected by ethidium bromide until germination was nearly completed. Mitochondrial DNA synthesis is apparently not required for germination of the spores of B. theobromae but is probably essential to continued vegetative growth.Abbreviations DNA deoxyribonucleic acid - mit-DNA mitochondrial DNA - nuc-DNA nuclear DNA - RNA ribonucleic acid - EB ethidium bromide - Tris tris (hydroxymethyl)aminomethane Published with the approval of the Director as Paper No. 3331, Journal Series, Nebraska Agricultural Experiment Station. Research reported was conducted under Project No. 21-17. Paper No. 7877, Scientific Journal Series, Minnesota Agricultural Experiment Station.  相似文献   

16.
17.
《Developmental biology》1986,117(2):636-643
During spore germination in the cellular slime mold Dictyostelium discoideum, spores swell and then release single amoebae in a highly synchronous manner. A mutant, named HE 1, is unable to complete the sequence. It swells normally but amoebae are not released from the swollen spore. The mutant was used to investigate whether this defect in spore germination affected the orderly progression of appearance and disappearance of mRNAs developmentally regulated during germination. Three previously characterized cDNA clones representing D. discoideum sequences that are modulated during spore germination, and are not present in growing cells, were used as probes. In the wild type, the levels of the respective mRNAs reach a peak early during spore germination (1-1.5 hr) but fall at later times, indicating that their synthesis has stopped and they are rapidly degraded. However, in the mutant, after reaching their maximum levels during germination (also at 1-1.5 hr), the mRNA levels remain high. This is apparently at least partly due to the increased stability of these mRNAs in the mutant compared to the wild type. It is concluded that the time of the onset of synthesis of the mRNAs and the time when their maximum levels is reached are normal in HE 1. However, the later events, the level of mRNA attained, and the subsequent disappearance of these mRNAs are abnormal.  相似文献   

18.
Spores may be reversibly activated by the application of heat, dimethyl sulfoxide, urea, or ethylene glucol. Severe changes in four environmental variables (high osmotic pressure, low oxygen tension, low or high pH, and low or high temperature) interfere with the germination process. Spores at the end of the postactivation lag phase of germination were usually deactivated if exposed to severe environmental conditions and thus did not swell; spores in the swelling and oxygen uptake which began during spore activation was primarily attributable to a cyanide-sensitive pathway and secondarily to a salicylhydroxamic acid (SHAM) sensitive pathway. Inhibition of the SHAM-sensitive pathway did not cause spore deactivation while the addition of cyanide resulted in rapid spore deactivation. Treatment of activated spores with azide or environmental shifts also resulted in inhibition of oxygen uptake and spore deactivation. Deactivating spores did not demonstrate the amino acid incorporation, uridine incorporation, and expression of trehalase activity which is found in the later stages of germinating control spores. Protein synthesis inhibitors did not cause spore deactivation or a decrease in oxygen uptake but they inhibited amino acid incorporation and the expression trehalase activity in swollen spores. It is concluded that control of respiratory activity is involved in regulation of reversible activation.  相似文献   

19.
When developing cultures of Dictyostelium discoideum are disaggregated at any time prior to cell wall formation and challenged to reinitiate development, amoebae will progress through the original sequence of morphogenetic stages, but the second time through they will do so in roughly one-tenth the original time, a process known as 'rapid recapitulation'. However, if disaggregated cells are suspended in nutrient medium, they enter a program of dedifferentiation during which they lose the capacity to rapidly recapitulate after an 80 minute lag period in a process known as 'erasure'. Here we show that cells that have completed the morphogenetic program and emerge from spore coats in the process of germination have also erased. In addition, the germination-specific 270 gene family is expressed during induced dedifferentiation in a unique fashion, and a germination-defective mutant exhibits a dramatic delay in erasure without concomitant defects in the program of gene regulation accompanying induced dedifferentiation. These results suggest for the first time that induced dedifferentiation and spore germination share some common processes in converting cells from a developmental to vegetative state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号