首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyunsaturated fatty acids (PUFAs), namely, oleic (C18:1), linoleic (C18:2), and gamma-linolenic acid (C18:3), constituted the majority in the total fatty acid content (44%) of sporangiospores of Mucor rouxii. At 30 degrees C, the germination begins within 1h at which time spore swelling occurs, followed by germ tube emergence within 3-4h. Throughout germination, an increase in gamma-linolenic acid (GLA) was observed and its content was highest at germ tube emergence. It took longer for sporangiospores of M. rouxii to germinate at sub-optimal temperatures (15 and 35 degrees C). However, the content of GLA was higher at the germ tube initiation than at the mycelial stage at all temperatures, suggesting the association of GLA and germination of sporangiospores. This finding was substantially confirmed by differential expression of delta9-, delta12-, and delta6-desaturase genes measured during spore germination. The expression of three desaturase genes parallels the pattern of GLA synthesis. By using RT-PCR techniques to follow gene expression, we found that mRNA of delta12- and delta6-desaturase genes were translated as soon as the spores were introduced into a fresh medium while the mRNA of delta9-desaturase gene could not be detected until 2h after introduction. A sharp increase in mRNA of delta6-desaturase genes correlated well with an increase in GLA content at germ tube emergence (4h). These results demonstrated that changes in fatty acid composition of sporangiospore of M. rouxii and differential expression of desaturase genes occurred during germination, and that extensive changes in GLA synthesis associated with some events in germination process.  相似文献   

2.
An analysis of metabolism by measurement of respiratory quotient values indicates that reduced substances, such as lipids and/or amino acids, are the primary respiratory substrates of dormant Dictyostelium discoideum spores. The spores appear to consume both reduced substances and carbohydrates during the swelling stage of germination. The respiration of emerged myxamoebae is again dominated by the consumption of reduced substances. The pool of trehalose remains largely intact during heat-induced activation and also during postactivation lag. The initiation of spore swelling is accompanied by a decrease in the trehalose pool; the majority of trehalose is consumed before late spore swelling. Upon placing heat-activated spores under restrictive environmental conditions, swelling and trehalose hydrolysis are both prevented. Release from these conditions results in rapid swelling and hydrolysis of trehalose. Trehalase, the enzyme responsible for trehalose breakdown, is present in dormant spores at basal levels. This preformed enzyme is responsible for the hydrolysis of trehalose even though there is a significant increase in trehalase activity with the emergence of myxamoebae. RNA and protein synthesis inhibitors do not prevent trehalose hydrolysis or spore swelling. It is concluded that oxidation of reduced substances occurs in dormant, activated, and swollen spores, as well as in emerged myxamoebae of D. discoideum. Carbohydrate utilization dominates over the oxidation of reduced substances only during the swelling stage of germination.  相似文献   

3.
Properties of Germinating Spores of Dictyostelium discoideum   总被引:9,自引:5,他引:4       下载免费PDF全文
The process of spore germination in Dictyostelium discoideum consists of three sequential stages: activation of dormant spores, swelling of activated spores, and emergence of myxamoebae from swollen spores. Dormant and activated spores are resistant to heating, freezing, or drying. Drying and freezing, moreover, may maintain the activated state until the spores are returned to normal conditions. Low temperature incubation after heat shock or the presence of an autoinhibitor will return activated spores to the dormant state. The entire spore germination process is aerobic, being inhibited at any point by oxygen deprivation or respiratory poisons. Each spore of this social organism appears to germinate at its own rate and independent of the other spores in the suspension.  相似文献   

4.
During synchronized germination of spores of Dictyostelium discoideum, protein synthesis begins almost concomitantly with syntheses of messenger-like RNA (mlRNA) and 4–5S RNA (presumably tRNA) in the swollen spore stage and the initiation of ribosomal RNA (rRNA) synthesis is somewhat delayed. DNA synthesis occurs in the early stages of the amoeba emergence phase. Cycloheximide (200 μg/ml) blocked spore germination as well as total protein synthesis, whereas actinomycin D (60 μg/ml) did not affect either. This concentration of actinomycin D selectively inhibited formation of rRNA but did not influence the synthesis of mlRNA. Examinations of RNA labeled with [14C]uracil during germination indicated that polysomes initially detectable in the course of the germination process contain 14C-labeled mlRNA. It was concluded that at least some of mRNA synthesized during germination of D. discoideum spores is involved in protein synthesis required for the germination.  相似文献   

5.
The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development.  相似文献   

6.
7.
The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development.  相似文献   

8.
The drug 4-nitroquinoline 1-oxide (4NQO) is a potent inhibitor of Dictyostelium discoideum spore germination. This inexpensive, water soluble drug is active at a concentration of 5 micrograms/ml (26 microM) and permeates the spore at all stages in germination. Spores subjected to 4NQO treatment exhibit an irreversible blockage of myxamoebae emergence, but spore activation, post-activation lag, and swelling are not affected. Swollen 4NQO-treated spores lose the outer two spore walls but lack the ability to degrade the innermost wall. The drug does not affect oxygen uptake during post-activation lag or swelling, and only a stage specific depression in O2 uptake is observed when control spores begin to release myxamoebae. When added early in germination, 4NQO blocks the incorporation of [3H] uracil into a cold trichloroacetic acid (TCA) insoluble fraction by 98%. However, when the drug is added midway through germination and followed by a pulse labelling period of 1 h, only 65% inhibition of RNA synthesis is observed. This lack of complete inhibition may occur because the drug requires metabolic activation; thus, new rounds of RNA synthesis may have initiated before the drug became fully activated. 4NQO also blocks the de novo expression of beta-glucosidase activity when added early in germination. Additionally, we observe that vegetative cellular slime mold cells are 100 times more resistant than spores to 4NQO-induced damage. Taken together, our results support the observation that RNA synthesis is only required for the emergence stage of germination and that dormant D. discoideum spores may lack efficient excision repair mechanisms.  相似文献   

9.
The optimal conditions for activation of Dictyostellium discoideum spores are an 8 M urea treatment for 30 min. The lag between activation and swelling is 45 min. Lower concentrations of urea do not activate entire spore populations. Incubating spores in 8 M urea for 60 min or treatment with 10 M urea for 30 min results in a lengthening of the post-activation lag and a decrease in the final percentage of germination. Urea-activated spores can be deactivated by azide, cyanide, osmotic pressure, and low-temperature incubation. Activated spores do not germinate if incubated in 1 M urea for 24 h but will complete germination upon resuspension in urea-free buffer. Shocking spores at 45 degrees C in 8 M urea or incubating spores in 4-8 M urea for 10 h at 23.5 degrees C causes inactivation. When suspended in urea-free buffer, a larger percentage of these dead spores release spheroplasts through a longitudinal split in the spore case. Sequential enzyme treatment of spheroplasts with cellulase and pronase causes them to release lysable protoplasts. The data of these experiments suggest that shedding of the outer and middle wall layers during physiological spore swelling may be a physical process rather than an enzymatic one.  相似文献   

10.
Abstract RasG protein levels in dormant and germinating spores of Dictyostelium discoideum strains JC1 and SG1 were estimated by Western blotting. Ras Glevels were very low in dormant spores and remained low during the lag period, regardless of whether spores were heat activated or treated with autoactivator during the early stages of spore germination. RasG levels increased late during spore swelling just prior to the emergence stage of germination. These data are consistent with a requirement for RasG during vegetative growth.  相似文献   

11.
The pattern of protein degradation during germination of Streptomyces antibioticus spores was studied by the pulse and chase technique. Two different protein fractions were found. First, a fraction of the proteins synthesized during the darkening process (20-30%) was quickly degraded in the 30 min following the labelling period. This rapid protein degradation was partially inhibited by protease inhibitors: p-chloromercuribenzoic acid, phenylmethylsulphonylfluoride, and o-phenanthroline. Second, the remaining 70-80% and the entire protein population formed during spore swelling and germ tube emergence were degraded with a lower and constant rate (3.3-6.0% /h). A stable mRNA fraction of the dormant spores was translated upon incubation of the spores in a minimal synthetic medium (MSM) or in distilled water. However, the degradation of these proteins did not occur unless the spores were then incubated in the MSM. A strong correlation between the degradation pattern of these proteins and that of those quickly degraded at the beginning of germination was observed. Protease activity in cell-free extracts of dormant spores was detected. Inhibition studies suggest the presence of serine, thiol, and metalloproteases. The protease activity, using casein as substrate, remained constant during the darkening process and started to increase progressively from the beginning of spore swelling.  相似文献   

12.
Germinating spores of Micromonospora chalcea pass through three morphological stages: darkening, swelling and germ tube emergence. The process of germination has pH and temperature optima of 8.0 and 40 degrees C, respectively, and is not affected by activation treatments. Darkening, accompanied by a loss of heat resistance and refractility and a decrease in absorbance of the dormant spores, needs only energy, which can be obtained from endogenous sources, and exogenous cations. Agents that inhibit ATP formation block darkening, but inhibitors of macromolecular synthesis do not affect it. Swelling requires exogenous carbon but not nitrogen sources and is characterized by a 30 to 40% increase in spore diameter. RNA synthesis is necessary for swelling and inhibitors of protein synthesis delay this process. During this stage, maximum respiratory, cytochrome oxidase and catalase activities are reached. DNA synthesis starts at the beginning of germ tube emergence. This final stage requires both exogenous carbon and nitrogen sources and the sequence of macromolecular synthesis is RNA, protein and, finally, DNA. Rifampicin, streptomycin and mitomycin C prevent protein and DNA synthesis regardless of when added during germination. Rifampicin inhibits [3H]uridine incorporation immediately but there is a delay of about 160 min in the case of streptomycin or mitomycin C.  相似文献   

13.
Abstract Spore swelling is a necessary prelude to the emergence of amoebae during spore germination in Dictyostelium discoideum . Previous work has shown that the initiation of this event requires the activity of the calcium-dependent regulatory protein calmodulin. In this study, the use of trifluoperazine, an inhibitor of calmodulin function, has shown that calmodulin activity is required throughout the swelling phase. When fully swollen spores were treated with trifluoperazine they rapidly returned to the same size and shape observed prior to swelling. These data suggest that spore swelling in D. discoideum is a dynamic process which is mediated by calmodulin.  相似文献   

14.
Microscopic, respirometric, and electronic sizing methods for measuring germination of fungal spores were compared. With the electronic sizing method, early stages of germination (i.e., spore swelling) were detected long before germ tube emergence or significant changes in respiratory rates were observed. This method, which is rapid, easy, sensitive, and reproducible, also permits measuring the germination of spores when similar-size particles are present in concentrations considerably in excess of the number of spores.  相似文献   

15.
16.
Several lysosomal glycosidase activities were examined in vitro during heat-induced germination of Dictyostelium discoideum spores and were found not to be coordinately controlled. The level of beta-glucosidase activity increased significantly during the emergence stage of germination. Both alpha-glucosidase and N-acetyl-beta-glucosaminidase activities remained relatively constant until postemergence, when they increased slightly; alpha-mannosidase activity decreased during all stages of germination. The activity of beta-galactosidase increased slightly during spore swelling, fell below the level initially found in spores at zero time, and increased slightly during postemergence. The expression of all of these enzyme activities, except the increase in beta-galactosidase, appeared to require protein synthesis. Spores in the lag phase of germination which were exposed to severe environmental stress were deactivated and exhibited reduced levels of alpha-glucosidase, beta-glucosidase, and N-acetyl-beta-glucosaminidase activities. Prolonged heat activation treatment reduced the levels of lysosomal glycosidase activities in postactivated spores but did not change the subsequent enzyme patterns during the spore-swelling and emergence stages of germination.  相似文献   

17.
Initiation of germination of heat-activated Streptomyces viridochromogenes spore occurs in media containing only calcium ions and organic buffer. The calcium-induced initiation of germination was accompanied by a decrease in absorbance of the spore suspension, an increased rate of endogenous metabolism, the loss of spore carbon, and the loss of heat resistance. Calcium amounts to 0.28% of the dry weight of freshly harvested spores. The amount of calcium remained the same after incubation of spores in water after heat activation. The spore content of calcium doubled after incubation in 0.5 mM CaCl2 for 5 min at 4 degrees C and during calcium-induced germination. Nearly all of the calcim appears to be bound to sites external to the spore membrane, since the chelating agents (ethylenedinitrilo) tetraacetic acid and arsenazo III removed virtually all of the calcium ions. The calcium ions must be present during the entire initiation of germination period. Germination ceases after an (ethylenedinitrilo) tetraacetic acid wash and begins again immediately after addition of calcium ions.  相似文献   

18.
Spores may be reversibly activated by the application of heat, dimethyl sulfoxide, urea, or ethylene glucol. Severe changes in four environmental variables (high osmotic pressure, low oxygen tension, low or high pH, and low or high temperature) interfere with the germination process. Spores at the end of the postactivation lag phase of germination were usually deactivated if exposed to severe environmental conditions and thus did not swell; spores in the swelling and oxygen uptake which began during spore activation was primarily attributable to a cyanide-sensitive pathway and secondarily to a salicylhydroxamic acid (SHAM) sensitive pathway. Inhibition of the SHAM-sensitive pathway did not cause spore deactivation while the addition of cyanide resulted in rapid spore deactivation. Treatment of activated spores with azide or environmental shifts also resulted in inhibition of oxygen uptake and spore deactivation. Deactivating spores did not demonstrate the amino acid incorporation, uridine incorporation, and expression of trehalase activity which is found in the later stages of germinating control spores. Protein synthesis inhibitors did not cause spore deactivation or a decrease in oxygen uptake but they inhibited amino acid incorporation and the expression trehalase activity in swollen spores. It is concluded that control of respiratory activity is involved in regulation of reversible activation.  相似文献   

19.
Dormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication. Results from nine different experiments performed in the presence of rifamycin revealed 15 protein spots. Transition from dormant spores to swollen spores is not affected by the presence of rifamycin but further development of spores is stopped. To support existence of pre-existing pool of mRNA in spores, cell-free extract of spores (S30 fraction) was used for in vitro protein synthesis. These results indicate that RNA of spores possesses mRNA functionally competent and provides templates for protein synthesis. Cell-free extracts isolated from spores, activated spores, and during spore germination were further examined for in vitro protein phosphorylation. The analyses show that preparation from dormant spores catalyzes phosphorylation of only seven proteins. In the absence of phosphatase inhibitors, several proteins were partially dephosphorylated. The activation of spores leads to a reduction in phosphorylation activity. Results from in vitro phosphorylation reaction indicate that during germination phosphorylation/dephosphorylation of proteins is a complex function of developmental changes.  相似文献   

20.
P K Herman  J Rine 《The EMBO journal》1997,16(20):6171-6181
Saccharomyces cerevisiae spore germination is a process in which quiescent, non-dividing spores become competent for mitotic cell division. Using a novel assay for spore uncoating, we found that spore germination was a multi-step process whose nutritional requirements differed from those for mitotic division. Although both processes were controlled by nutrient availability, efficient spore germination occurred in conditions that did not support cell division. In addition, germination did not require many key regulators of cell cycle progression including the cyclin-dependent kinase, Cdc28p. However, two processes essential for cell growth, protein synthesis and signaling through the Ras protein pathway, were required for spore germination. Moreover, increasing Ras protein activity in spores resulted in an accelerated rate of germination and suggested that activation of the Ras pathway was rate-limiting for entry into the germination program. An early step in germination, commitment, was identified as the point at which spores became irreversibly destined to complete the uncoating process even if the original stimulus for germination was removed. Spore commitment to germination required protein synthesis and Ras protein activity; in contrast, post-commitment events did not require ongoing protein synthesis. Altogether, these data suggested a model for Ras function during transitions between periods of quiescence and cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号