首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Certain cultured epithelial cells contain separate vimentin and keratin-type intermediate filament networks. The intracellular injection of monoclonal antibodies directed against either vimentin or keratin filaments into PtK2 cultured epithelial cells specifically disrupted the organization of both filament types. Neither antibody had any effect when injected into cells which, while containing vimentin or keratin filaments, lacked the specific filament type which that antibody recognized. These experiments suggest that keratin and vimentin filament networks are associated in some way with one another.  相似文献   

2.
The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle.  相似文献   

3.
Summary Epithelial cells can be cultured from the urine of newborn infants, providing a simple, noninvasive biopsy method. We established such cultures by standard techniques from 44% of uncontaminated, specimens obtained from newborn infants up to 1 week of age. There was an average of three colonies per milliliter of urine. Many cultures accomplished 15 to 25 population doublings in as many as five subcultures and yielded total potential culture sizes of 104 to 6×108 cells. Plating efficiency was high at each passage. The cultures displayed two morphologically distinct epithelial cell types. Immunofluorescent staining of keratin fibers in most of these cells further, identified them as epithelial. This work was supported by NIH grants, CA16754 (J. S. F., J. W. L.) and EY02472, AM25140, AM21358, and a Research Career Development Award (EY00125) to T.-T. S.  相似文献   

4.
J S Felix  T T Sun  J W Littlefield 《In vitro》1980,16(10):866-874
Epithelial cells can be cultured from the urine of newborn infants, providing a simple, noninvasive biopsy method. We established such cultures by standard techniques from 44% of uncontaminated specimens obtained from newborn infants up to 1 week of age. There was an average of three colonies per milliliter of urine. Many cultures accomplished 15 to 25 population doublings in as many as five subcultures and yielded total potential culture sizes of 10(4) to 6 x 10(8) cells. Plating efficiency was high at each passage. The cultures displayed two morphologically distinct epithelial cell types. Immunofluorescent staining of keratin fibers in most of these cells further identified them as epithelial.  相似文献   

5.
Cardiac muscle cells from 3-day-old rat neonates were cultured for periods of 2 to 56 days. In order to facilitate ultrastructural studies on the organization of the sarcoplasmic reticulum, the cells were prepared for transmission electron microscopy according to a regimen including postfixation in reduced osmium ferrocyanide. The nonjunctional sarcoplasmic reticulum (NJSR) was organized as a loose, fenestrated sleeve around the exterior of bundles of myofilaments and was particularly prominent at the level of the Z line. The only recognizable junctional elements of the sarcoplasmic reticulum were in a peripheral location. Reduced osmium ferrocyanide was also useful in distinguishing intermediate (10 nm) filaments, since it understained Z substance, which often obscured these structures. Intermediate filaments were arranged both at the Z line and the intercalated disc, in parallel strands, approximately at right angles to the myofilaments.  相似文献   

6.
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.  相似文献   

7.
Dexamethasone (DM)-induced changes in morphology and keratin organization of rat thymic epithelial cells (TECs) in primary culture were studied. The morphology and keratin organization of TECs were greatly altered by the addition of more than 10 nM DM. In control cultures, small slender cells were predominant and grew faster than cells of other types. Most of them had keratin bundles on day 3, but lost the bundles on day 7. In experimental cultures containing more than 10 nM DM, the morphology of TECs altered to a polygonal form and the TECs formed colonies. They had fine interlacing bundles of keratin filaments all over the cytoplasm, and the bundles were maintained or increased in number with the day of culture. Keratin proteins in TECs treated with 100 nM DM for 7 days were 2-fold for 46 500 D, 4-fold for 49 000 D, 1.7-fold for 52 000 D and 3.5-fold for 55 500 D keratins to those in control TECs, respectively. Growth of TECs was inhibited by the addition of more than 10 nM DM. The effects of DM were reversible to some extent, for the morphology and keratin organization of TECs gradually changed into the control type by the removal of DM. These results suggested that DM greatly involved the growth and differentiation of rat TECs.  相似文献   

8.
Withaferin A (WFA) is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF) into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.  相似文献   

9.
X Lu  E B Lane 《Cell》1990,62(4):681-696
With retrovirus-mediated gene transfer, we used intact and deleted keratin proteins to investigate the molecular basis of intermediate filament function. Three levels of assembly show a different stringency for the involvement of individual keratin domains: protein accumulation requires the alpha helix domains; stable filament formation additionally requires both N- and C-terminal domains of either one of the two interacting keratins, suggesting that head to tail homotypic interaction is important for effective elongation; and higher order organization of the cytoplasmic network depends on correct type I-type II pairing of keratins. The presence of two distinct interaction sites along potentially different axes may explain the characteristic morphology of keratin intermediate filament networks.  相似文献   

10.
Keratin polypeptide 19 (K19) is a type I intermediate filament protein that is expressed in stratified and simple-type epithelia. Little is known regarding K19 regulation or function, and the only other type I keratin that has been studied in terms of regulation is keratin 18 (K18). We characterized K19 phosphorylation as a handle to study its function. In vivo, serine is the major phosphorylated residue, and phosphopeptide mapping of 32PO4-labeled K19 generates one major phosphopeptide. Edman degradation suggested that the radiolabeled phosphopeptide represents K19 Ser-10 and/or Ser-35 phosphorylation. Mutation of Ser-10 or Ser-35 followed by transfection confirmed that Ser-35 is the major K19 phosphorylation site. Transfection of Ser-35 --> Ala K19 showed a filament assembly defect as compared with normal or with Ser-10 --> Ala K19. Comparison of K18 and K19 phosphorylation features in interphase cells showed that both are phosphorylated primarily at a single site, preferentially in the soluble versus the insoluble keratin fractions. K19 has higher basal phosphorylation, whereas K18 phosphorylation is far more sensitive to phosphatase type I and IIA inhibition. Our results demonstrate that Ser-35 is the major K19 interphase phosphorylation site and that it plays a role in keratin filament assembly. K19 and K18 phosphorylations share some features but also have distinct properties that suggest different regulation of type I keratins within the same cells.  相似文献   

11.
We recently reported that a trans-dimer, homotypic disulfide bond involving Cys367 in keratin 14 (K14) occurs in an atomic-resolution structure of the interacting K5/K14 2B domains and in keratinocyte cell lines. Here we show that a sizable fraction of the K14 and K5 protein pools participates in interkeratin disulfide bonding in primary cultures of mouse skin keratinocytes. By comparing the properties of wild-type K14 with a completely cysteine-free variant thereof, we found that K14-dependent disulfide bonding limited filament elongation during polymerization in vitro but was necessary for the genesis of a perinuclear-concentrated network of keratin filaments, normal keratin cycling, and the sessile behavior of the nucleus and whole cell in keratinocytes studied by live imaging. Many of these phenotypes were rescued when analyzing a K14 variant harboring a single Cys residue at position 367. These findings establish disulfide bonding as a novel and important mechanism regulating the assembly, intracellular organization, and dynamics of K14-containing intermediate filaments in skin keratinocytes.  相似文献   

12.
To clarifyinteractions between the cytoskeleton and activity of L-typeCa2+ (CaL) channels in vascular smooth muscle(VSM) cells, we investigated the effect of disruption of actinfilaments and microtubules on the L-type Ca2+ current[IBa(L)] of cultured VSM cells (A7r5 cellline) using whole cell voltage clamp. The cells were exposed to eachdisrupter for 1 h and then examined electrophysiologically andmorphologically. Results of immunostaining using anti--actin andanti--tubulin antibodies showed that colchicine disrupted both actinfilaments and microtubules, cytochalasin D disrupted only actinfilaments, and nocodazole disrupted only microtubules.IBa(L) was greatly reduced in cells that wereexposed to colchicine or cytochalasin D but not to nocodazole.Colchicine even inhibited IBa(L) by about 40%when the actin filaments were stabilized by phalloidin or when thecells were treated with phalloidin plus taxol to stabilize bothcytoskeletal components. These results suggest that colchicine mustalso cause some inhibition of IBa(L) due toanother unknown mechanism, e.g., a direct block of CaLchannels. In summary, actin filament disruption of VSM cells inhibitsCaL channel activity, whereas disrupting the microtubulesdoes not.

  相似文献   

13.
《The Journal of cell biology》1983,97(5):1429-1434
Analysis by means of two-dimensional gel electrophoresis (IEF) of [32P]orthophosphate-labeled proteins from mitotic and interphase transformed amnion cells (AMA) has shown that keratins IEF 31 (Mr = 50,000; Hela protein catalogue number), 36 (Mr = 48,500), 44 (Mr = 44,000), 46 (Mr = 43,500), as well as vimentin (IEF 26; Mr = 54,000) are phosphorylated above their interphase level during mitosis. Similar studies of normal human amnion epithelial cells (AF type) confirmed the above observations except in the case of keratin IEF 44 whose relative proportion was too low to be analyzed. Immunofluorescent staining of methanol/acetone-treated mitotic transformed amnion cells with a mouse polyclonal antibody elicited against human keratin IEF 31 showed a dotted staining (with a fibrillar background) in all of the cells in late anaphase/early telophase (characteristic "domino" pattern) and in a sizeable proportion of the cells in other stages of mitosis. Normal mitotic amnion cells on the other hand showed a fine fibrillar staining of keratins at all stages of mitosis. Similar immunofluorescent staining of normal and transformed mitotic cells with vimentin antibodies revealed a fibrillar distribution of vimentin in both cell types. Taken together the results indicate that the transformed amnion cells may contain a factor(s) that modulates the organization of keratin filaments during mitosis. This putative factor(s), however, is most likely not a protein kinase as transformed amnion cells and amnion keratins are modified to similar extents. It is suggested that in general the preferential phosphorylation of intermediate-sized filament proteins during mitosis may play a role in modulating the various proposed associations of these filaments with organelles and other cellular structures.  相似文献   

14.
Elucidating the early stages of keratin filament assembly   总被引:25,自引:13,他引:12       下载免费PDF全文
Because of extraordinarily tight coiled-coil associations of type I and type II keratins, the composition and structure of keratin subunits has been difficult to determine. We report here the use of novel genetic and biochemical methods to explore the early stages of keratin filament assembly. Using bacterially expressed humans K5 and K14, we show that remarkably, these keratins behave as 1:1 complexes even in 9 M urea and in the presence of a reducing agent. Gel filtration chromatography and chemical cross-linking were used to identify heterodimers and heterotetramers as the most stable building blocks of keratin filament assembly. EM suggested that the dimer consists of a coiled-coil of K5 and K14 aligned in register and in parallel fashion, and the tetramer consists of two dimers in antiparallel fashion, without polarity. In 4 M urea, both end-to-end and lateral packing of tetramers occurred, leading to a variety of larger heteromeric complexes. The coexistence of multiple, higher-ordered associations under strongly denaturing conditions suggests that there may not be a serial sequence of events leading to the assembly of keratin intermediate filaments, but rather a number of associations may take place in parallel.  相似文献   

15.
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.  相似文献   

16.
Immunofluorescent staining of keratin fibers in cultured cells.   总被引:61,自引:0,他引:61  
T T Sun  H Green 《Cell》1978,14(3):469-476
Antibody prepared against a group of keratins purified from human stratum corneum was used to identify cells containing keratins by immunofluorescence. In sectioned tissue and in culture, keratinocytes of skin and other stratified squamous epithelia-whether human, rabbit of mouse-stained strongly, indicating homologous amino acid sequences in the keratins of these species. In all cases, the antibody revealed a dense cytoplasmic network of discrete fibers probably consisting of aggregated (tono-) filaments. The pattern of staining was not affected by cytochalasin B or colcemid. No keratins were detected in cultured cells of mesenchymal origin (3T3, NIL, BHK, human diploid fibroblasts) or in connective tissues, indicating that the 100 A filaments of fibroblasts are not related to the keratins. Keratinocytes at all stages of differentiation, including basal cells, stained brightly and therefore contained abundant keratins.  相似文献   

17.
With the exception of keratinocytes and some types of cultured cells, ciliated cells appear to be the major cell type which contains the most developed cytokeratin meshwork. We report, here, on the intermediate filament (IF) organization in ciliated cells of the quail oviduct using ultrastructural and immunocytochemical techniques. Special attention was focused on the relationships between IF and other cell organelles. The meshwork of IFs appears as a subapical disk constituted of separate bundles mainly composed of interwoven 10-nm filaments. From this subapical region, a descending bundle connects the array of IFs occupying the basal part of the cell. The nucleus is maintained in a loose network of IFs. In ciliated cells there are no free centrioles, but IFs are related to centriolar appendages (striated rootlets).  相似文献   

18.
19.
Plasticity of the resilient keratin intermediate filament cytoskeleton is an important prerequisite for epithelial tissue homeostasis. Here, the contribution of stress-activated p38 MAPK to keratin network organization was examined in cultured cells. It was observed that phosphorylated p38 colocalized with keratin granules that were rapidly formed in response to orthovanadate. The same p38(p) recruitment was noted during mitosis, in various stress situations and in cells producing mutant keratins. In all these situations keratin 8 became phosphorylated on S73, a well-known p38 target site. To demonstrate that p38-dependent keratin phosphorylation determines keratin organization, p38 activity was pharmacologically and genetically modulated: up-regulation induced keratin granule formation, whereas down-regulation prevented keratin filament network disassembly. Furthermore, transient p38 inhibition also inhibited keratin filament precursor formation and mutant keratin granule dissolution. Collectively, the rapid and reversible effects of p38 activity on keratin phosphorylation and organization in diverse physiological, stress, and pathological situations identify p38-dependent signalling as a major intermediate filament-regulating pathway.  相似文献   

20.
Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号