首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.  相似文献   

2.
To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/-) mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/-) mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9) as a reference strain for model development. Pf3D7(0087/N9) caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.  相似文献   

3.
ABSTRACT: BACKGROUND: Human malaria infections caused by the parasite Plasmodium falciparum often contain more than one genetically distinct parasite. Despite this fact, nearly all studies of multiple strain P. falciparum infections have been limited to determining relative densities of each parasite within an infection. In light of this, new methods are needed that can quantify the absolute number of parasites within a single infection. METHODS: A quantitative PCR (qPCR) method was developed to track the dynamic interaction of P. falciparum infections containing genetically distinct parasite clones in cultured red blood cells. Allele-specific primers were used to generate a standard curve and to quantify the absolute concentration of parasite DNA within multi-clonal infections. Effects on dynamic growth relationships between parasites under drug pressure were examined by treating mixed cultures of drug sensitive and drug resistant parasites with the anti-malarial drug chloroquine at different dosing schedules. RESULTS: An absolute quantification method was developed to monitor the dynamics of P. falciparum cultures in vitro. This method allowed for the observation of competitive suppression, the reduction of parasites numbers due to the presence of another parasite, and competitive release, the improved performance of a parasite after the removal of a competitor. These studies demonstrated that the presence of two parasites led to the reduction in density of at least one parasite. containing both a drug resistant and drug sensitive parasites resulted in an increased proportion of the drug resistant parasite. Moreover, following drug treatment, the resistant parasite experienced competitive release by exhibiting a fitness benefit greater than simply surviving drug treatment, due to the removal of competitive suppression by the sensitive parasite. CONCLUSIONS: The newly developed assay allowed for the examination of the dynamics of two distinct clones in vitro; both competitive suppression and release were observed. A deeper understanding of the dynamic growth responses of multiple strain P. falciparum infections, with and without drug pressure, can improve the understanding of the role of parasite interactions in the spread of drug resistant parasites, perhaps suggesting different treatment strategies.  相似文献   

4.
5.
The dissemination of mutant and resistant strains of Plasmodium falciparum makes a considerable contribution to the spread of drug-resistant malaria. Populations around harbours and airports could be particularly exposed to Plasmodium isolates introduced with imported cases of malaria. The use of chloroquine as well as the use of and sulfadoxine/pyrimethamine is currently an effective method for treating uncomplicated cases of malaria in Madagascar. As part of a monitoring programme, in vitro methods were used to assess the sensitivity of P. falciparum isolates in two coastal towns in Madagascar: Mahajanga on the west coast and Toamasina on the east coast. All of the isolates from both sites were sensitive to amodiaquine, quinine, pyrimethamine and cycloguanil. All of the isolates from Mahajanga were sensitive to chloroquine (n = 25; mean IC50 = 22.6 nM, 95% confidence interval: 16.8-28.7 nM), whereas three of the isolates from Toamasina were resistant to chloroquine (n = 18; mean IC50 = 66.3 nM; 95% confidence interval: 42.6-90 nM). The frequency of the Pfcrt Thr-76 and the dhfr Asn-108 mutations was estimated by PCR/RFLP. The 43 P. falciparum isolates examined, including the three in vitro chloroquine-resistant isolates from Toamasina were all wild-type (Lys-76). Phenotyping and genotyping studies suggested that the prevalence of chloroquine- and pyrimethamine-resistant isolates and of mutant strains of P. falciparum is very low. These results showed that in vitro test and genotyping of resistance markers approaches could be successfully used to monitor the emergence of drug-resistant malaria and to try to alleviate the lack of medical teams able to carry out in vivo test. The possible hazard/risk associated with imported cases of malaria is discussed.  相似文献   

6.
Protective immunity to malaria is acquired after repeated exposure to the polymorphic Plasmodium falciparum parasite. Whether the number of concurrent antigenically diverse clones in asymptomatic infections predicts the risk of subsequent clinical malaria needs further understanding. We assessed the diversity of P. falciparum infections by merozoite surface protein 2 genotyping in a longitudinal population based study in Tanzania. The number of clones was highest in children 6-10 years and in individuals with long time to previous anti-malarial treatment. Individual exposure, analysed by circumsporozoite protein antibody levels, was associated with parasite prevalence but not with the number of clones. The risk of subsequent clinical malaria in children free of acute disease or recent treatment was, compared to one clone, reduced in individuals with multiclonal infections or without detectable parasites, with the lowest hazard ratio 0.28 (95% confidence interval 0.10-0.78 Cox regression) for 2-3 clones. The number of clones was not associated with haemoglobin levels. A reduced risk of malaria in asymptomatic individuals with multiclonal persistent P. falciparum infections suggests that controlled maintenance of diverse infections is important for clinical protection in continuously exposed individuals, and needs to be considered in the design and evaluation of new malaria control strategies.  相似文献   

7.
We investigated Plasmodium falciparum genetic diversity in isolates collected from school-going residents aged from 5 to 15 years in the village of Pouma (Cameroon, Central Africa). Seventy-six children were grouped according to the clinical status. Asymptomatic status was defined as parasite carriage in the absence of any clinical symptom and malaria symptomatic status with patent parasitemia over 5000 parasites/microliter of blood and an axillary temperature > 37.5 degrees C. Parasite DNA was analysed prior to malaria treatment. Genotyping of the P. falciparum merozoite surface proteins (MSP) 1 and 2 was performed by polymerase chain reaction using allele-specific primers. K1, MAD20, Ro33 and 3D7/CAMP, FC27 allelic families were attributed to MSP-1 and MSP-2 genes, respectively. No association was found between P. falciparum MSP-1 and MSP-2 genotypes and the clinical status of children. Mixed P. falciparum infections were detected in 78% of overall samples and all isolates from symptomatic children contained more than 1 clone. The results obtained in the village of Pouma were compared to those of the village of Dienga in Gabon where a similar study, using the same genotyping methods, had been carried out in the same age group of schoolchildren. Data are interpreted in the context of malaria epidemiology in both settings.  相似文献   

8.
Merozoite surface protein 1 (MSP1) is the major protein component on the surface of the merozoite, the erythrocyte-invasive form of the malaria parasite Plasmodium. Present in all species of Plasmodium, it undergoes two distinct proteolytic maturation steps during the course of merozoite development that are essential for invasion of the erythrocyte. Antibodies specific for the C-terminal maturation product, MSP1-19, can inhibit erythrocyte invasion and parasite growth. This polypeptide is therefore considered to be one of the more promising malaria vaccine candidates. We describe here the crystal structure of recombinant MSP1-19 from P.falciparum (PfMSP1-19), the most virulent species of the parasite in humans, as a complex with the Fab fragment of the monoclonal antibody G17.12. This antibody recognises a discontinuous epitope comprising 13 residues on the first epidermal growth factor (EGF)-like domain of PfMSP1-19. Although G17.12 was raised against the recombinant antigen expressed in an insect cell/baculovirus system, it binds uniformly to the surface of merozoites from the late schizont stage, showing that the cognate epitope is exposed on the naturally occurring MSP1 polypeptide complex. Although the epitope includes residues that have been mapped to regions recognised by invasion-inhibiting antibodies studied by other workers, G17.12 does not inhibit erythrocyte invasion or MSP1 processing.  相似文献   

9.
10.
Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin.  相似文献   

11.
Acquired antibiotic resistance typically confers a cost to the bacteria, but these costs can be reduced by genetic compensation over time. The fitness of two Bacteroides thetaiotaomicron clones consecutively isolated in vivo was studied using an in vitro pair-wise competition method. The isolates derived from faecal samples of two clindamycin-exposed healthy volunteers and the two B. thetaiotaomicron clone types could be followed up to 18 months in these two subjects. The two clones were originally susceptible to clindamycin and lacked erm genes; however, after 7 days of clindamycin administration they carried the erm (erythromycin methylase)(G) or (F) gene, respectively, and expressed phenotypic clindamycin resistance. The initial cost of acquired resistance was high as seen in the in vitro pair-wise competition experiments. At 2 weeks post-administration, no growth disadvantage was detected for isolates of either of the two clones in the in vitro experiments and this regained fitness remained for isolates collected up to 18 months. Competition analysis of an in vitro isolated erm(G) positive transconjugant also demonstrated an initial reduction of fitness that was restored over time. The results indicate that the biological cost associated with a resistance gene can rapidly be compensated during in vivo growth. Thus, once the resistant clone has gained its resistance determinant it will be difficult to eliminate.  相似文献   

12.
CD4 is known to be an important receptor for human immunodeficiency virus type 1 (HIV-1) infection of T lymphocytes and macrophages. However, the limiting steps in CD4-dependent HIV-1 infections in vivo and in vitro are poorly understood. To address this issue, we produced a panel of HeLa-CD4 cell clones that express widely different amounts of CD4 and quantitatively analyzed their infection by laboratory-adapted and primary patient HIV-1 isolates. For all HIV-1 isolates, adsorption from the medium onto HeLa-CD4 cells was inefficient and appeared to be limiting for infection in the conditions of our assays. Adsorption of HIV-1 onto CD4-positive peripheral blood mononuclear cells was also inefficient. Moreover, there was a striking difference between laboratory-adapted and primary T-cell-tropic HIV-1 isolates in the infectivity titers detected on different HeLa-CD4 cells. Laboratory-adapted HIV-1 isolates infected all HeLa-CD4 cell clones with equal efficiencies regardless of the levels of CD4, whereas primary HIV-1 isolates infected these clones in direct proportion to cellular CD4 expression. Our interpretation is that for laboratory-adapted isolates, a barrier step that preceeds CD4 encounter was limiting and the subsequent CD4-dependent virus capture process was highly efficient, even at very low cell surface concentrations. In contrast, for primary HIV-1 isolates, the CD4-dependent steps appeared to be much less efficient. We conclude that primary isolates of HIV-1 infect inefficiently following contact with surfaces of CD4-positive cells, and we propose that this confers a selective disadvantage during passage in rapidly dividing leukemia cell lines. Conversely, in vivo selective pressure appears to favor HIV-1 strains that require large amounts of CD4 for infection.  相似文献   

13.
ABSTRACT: BACKGROUND: Apparent emerging artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia requires development of practical tools to monitor for resistant parasites. Although in vitro anti-malarial susceptibility tests are widely used, uncertainties remain regarding interpretation of P. falciparum field isolate values. METHODS: Performance parameters of the W2 P. falciparum clone (considered artemisinin "sensitive") were evaluated as a reference for the HRP-2 immediate ex vivo assay. Variability in W2 IC50s was assessed, including intra- and inter-assay variability among and between technicians in multiple experiments, over five freeze-thaw cycles, over five months of continuous culture, and before and after transport of drug-coated plates to remote field sites. Nominal drug plate concentrations of artesunate (AS) and dihydroartemisinin (DHA) were verified by LC-MS analysis. Plasmodium falciparum field isolate IC50s for DHA from subjects in an artemisininresistant area in Cambodia were compared with W2 susceptibility. RESULTS: Plate drug concentrations and day-to-day technical assay performance among technicians were important sources of variability for W2 IC50s within and between assays. Freeze-thaw cycles, long-term continuous culture, and transport to and from remote sites had less influence. Despite variability in W2 susceptibility, the median IC50s for DHA for Cambodian field isolates were higher (p <0.0001) than the W2 clone (3.9 nM), both for subjects with expected (less than 72 hours; 6.3 nM) and prolonged (greater or equal to 72 hours; 9.6 nM) parasite clearance times during treatment with artesunate monotherapy. CONCLUSION: The W2 reference clone improved the interpretability of field isolate susceptibility from the immediate ex vivo HRP-2 assay from areas of artemisinin resistance. Methods to increase the reproducibility of plate coating may improve overall assay interpretability and utility.  相似文献   

14.
BACKGROUND AND METHODOLOGY: Toxoplasma gondii causes substantial morbidity, mortality, and costs for healthcare in the developed and developing world. Current medicines are not well tolerated and cause hypersensitivity reactions. The dihydrotriazine JPC-2067-B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(3'(2-chloro-, 4-trifluoromethoxyphenoxy)propyloxy)-1, 3, 5-triazine), which inhibits dihydrofolate reductase (DHFR), is highly effective against Plasmodium falciparum, Plasmodium vivax, and apicomplexans related to T. gondii. JPC-2067-B is the primary metabolite of the orally active biguanide JPC-2056 1-(3'-(2-chloro-4-trifluoromethoxyphenyloxy)propyl oxy)- 5-isopropylbiguanide, which is being advanced to clinical trials for malaria. Efficacy of the prodrug JPC-2056 and the active metabolite JPC-2067-B against T. gondii and T. gondii DHFR as well as toxicity toward mammalian cells were tested. PRINCIPAL FINDINGS AND CONCLUSIONS: Herein, we found that JPC-2067-B is highly effective against T. gondii. We demonstrate that JPC-2067-B inhibits T. gondii growth in culture (IC50 20 nM), inhibits the purified enzyme (IC50 6.5 nM), is more efficacious than pyrimethamine, and is cidal in vitro. JPC-2067-B administered parenterally and the orally administered pro-drug (JPC-2056) are also effective against T. gondii tachyzoites in vivo. A molecular model of T. gondii DHFR-TS complexed with JPC-2067-B was developed. We found that the three main parasite clonal types and isolates from South and Central America, the United States, Canada, China, and Sri Lanka have the same amino acid sequences preserving key binding sites for the triazine. SIGNIFICANCE: JPC-2056/JPC-2067-B have potential to be more effective and possibly less toxic treatments for toxoplasmosis than currently available medicines.  相似文献   

15.
In order to investigate the genetic diversity of iron-containing superoxide dismutase (FeSOD) from Plasmodium falciparum, a potential anti-malarial therapeutic target, we cloned and sequenced Plasmodium FeSOD from 26 blood samples from non-infected patients. Fifteen clones had the same nucleotide sequence as that of the FeSOD gene of the P. falciparum strain HB3 cultivated in vitro. The other 11 clones presented mutations responsible for punctual amino acid changes which did not modify key residues for the function or the structure of the enzyme. The high sequence conservation between FeSOD from the isolates confirms that this enzyme could represent a therapeutic target.  相似文献   

16.
Eleven clones of a single strain of Leishmania infantum (MCAN/ES/88/ISS441, Doba) were analyzed for biological behavior in vivo and in vitro. Different clones showed differences in growth dependent upon the two culture media employed. All clones displayed only slight differences in H2O2 and NaNO2 sensitivity compared to the original strain, whereas in vitro infectivity for mouse peritoneal macrophages differed significantly among the clones. In vivo infections in hamsters correlated strongly with in vitro infectivity. The phenotypic differences found suggest a polyclonal structure for the Leishmania infantum strain studied.  相似文献   

17.
Chromosomal DNA was prepared from seven Plasmodium falciparum isolates that had been cultured in vitro and from a cloned P. falciparum line. The DNA was cleaved with restriction endonucleases, fractionated by agarose gel electrophoresis, blotted to nitrocellulose, and hybridized with a series of radioactively labeled DNA probes. The probes had been derived from cDNA clones encoding portions of P. falciparum antigens. Simple, reproducible band patterns that differed for many of the isolates were obtained. Parasite isolates collected from different continents could be readily distinguished, as could some but not all isolates collected from one restricted region of Papua New Guinea. Application of this technique for the identification and differentiation of parasite strains was explored. The patterns of hybridization observed were consistent with the proposition that blood stages of P. falciparum have a haploid genome.  相似文献   

18.
Mosquito infections with natural isolates of Plasmodium falciparum are notoriously variable and pose a problem for reliable evaluation of efficiency of transmission-blocking agents for malaria control interventions. Here, we show that monoclonal P. falciparum isolates produce higher parasite loads than mixed ones. Induction of the mosquito immune responses by wounding efficiently decreases Plasmodium numbers in monoclonal infections but fails to do so in infections with two or more parasite genotypes. Our results point to the parasites genetic complexity as a potentially crucial component of mosquito-parasite interactions.  相似文献   

19.
Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.  相似文献   

20.
Using DNA extracted from 112 parasitised blood blots, we screened for the population marker of chloroquine resistance (CQR) pfcrt K76T in Plasmodium falciparum infections from Guyana. Pfmdr1 mutations S1034C, N1042D, and D1246Y also associated with CQR were surveyed as well in 15 isolates for which the in vitro responses to CQ were known. Results indicate that the pfcrt K76T is ubiquitous in this environment, and confirmatory sequencing of codons 72 and 76 revealed two novel allelic sequences SVMIT and RVMNT in addition to the previously identified CVMNT and SVMNT haplotypes. The frequency of the pfcrt K76T despite its presence in both CQR and CQS (chloroquine sensitive) infections measured in vivo and in vitro, suggests that it is a useful population marker in this low-transmission setting of sweeping CQR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号