首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motexafin gadolinium (MGd) is a chemotherapeutic drug that selectively targets tumor cells and mediates redox reactions generating reactive oxygen species. Thioredoxin (Trx), NADPH, and thioredoxin reductase (TrxR) of the cytosol/nucleus or mitochondria are major thiol-dependent reductases with many functions in cell growth, defense against oxidative stress, and apoptosis. Mammalian TrxRs are selenocysteine-containing flavoenzymes; MGd was an NADPH-oxidizing substrate for human or rat TrxR1 with a Km value of 8.65 microM (kcat/Km of 4.86 x 10(4) M(-1) s(-1)). The reaction involved redox cycling of MGd by oxygen producing superoxide and hydrogen peroxide. MGd acted as a non-competitive inhibitor (IC50 of 6 microM) for rat TrxR. In contrast, direct reaction between MGd and reduced human Trx was negligible. The corresponding reaction with reduced Escherichia coli Trx was also negligible, but MGd was a better substrate (kcat/Km of 2.23 x 10(5) M(-1) s(-1)) for TrxR from E. coli and a strong inhibitor of Trx-dependent protein disulfide reduction. Ribonucleotide reductase (RNR), a 1:1 complex of the non-identical R1- and R2-subunits, catalyzes the essential de novo synthesis of deoxyribonucleotides for DNA synthesis using electrons from Trx and TrxR. MGd inhibited recombinant mouse RNR activity with either 3 microM reduced human Trx (IC50 2 microM) or 4 mM dithiothreitol (IC50 6 microM) as electron donors. Our results demonstrate MGd-induced enzymatic generation of reactive oxygen species by TrxR plus a powerful inhibition of RNR. This may explain the effects of the drug on cancer cells, which often overproduce TrxR and have induced RNR for replication and repair.  相似文献   

2.
S-Nitrosoglutathione (GSNO) is a nitrosothiol which plays a major role in the metabolism of NO in higher plants mediating signaling processes. Protein tyrosine nitration (NO2–Tyr) is a post-translational modification which contributes to protein regulation. The subcellular localization of GSNO, S-nitrosoglutathione reductase (GSNOR), an enzyme which catalyzes its decomposition and protein tyrosine nitration was studied in pea (Pisum sativum L.) leaf plants with the aid of the electron microscopy immunogold-labeling technique. Our findings show that GSNO, GSNOR and nitrated proteins are present in the different subcellular compartments of leaf cells which include chloroplasts, cytosol, mitochondria, and peroxisomes. Given that pea peroxisomes are one of the cell compartments where nitric oxide (NO) has been thoroughly studied, our results provide additional insights into the metabolism of NO in this organelle where NO and GSNO could function as signal molecules in cross talk between the different cell compartments.  相似文献   

3.
4.
Approximately one-third of the world's population carries Staphylococcus aureus. The recent emergence of extreme drug resistant strains that are resistant to the "antibiotic of last resort", vancomycin, has caused a further increase in the pressing need to discover new drugs against this organism. The S. aureus enoyl reductase, saFabI, is a validated target for drug discovery. To drive the development of potent and selective saFabI inhibitors, we have studied the mechanism of the enzyme and analyzed the interaction of saFabI with triclosan and two related diphenyl ether inhibitors. Results from kinetic assays reveal that saFabI is NADPH-dependent, and prefers acyl carrier protein substrates carrying fatty acids with long acyl chains. On the basis of product inhibition studies, we propose that the reaction proceeds via an ordered sequential ternary complex, with the ACP substrate binding first, followed by NADPH. The interaction of NADPH with the enzyme has been further explored by site-directed mutagenesis, and residues R40 and K41 have been shown to be involved in determining the specificity of the enzyme for NADPH compared to NADH. Finally, in preliminary inhibition studies, we have shown that triclosan, 5-ethyl-2-phenoxyphenol (EPP), and 5-chloro-2-phenoxyphenol (CPP) are all nanomolar slow-onset inhibitors of saFabI. These compounds inhibit the growth of S. aureus with MIC values of 0.03-0.06 microg/mL. Upon selection for resistance, three novel safabI mutations, A95V, I193S, and F204S, were identified. Strains containing these mutations had MIC values approximately 100-fold larger than that of the wild-type strain, whereas the purified mutant enzymes had K i values 5-3000-fold larger than that of wild-type saFabI. The increase in both MIC and K i values caused by the mutations supports the proposal that saFabI is the intracellular target for the diphenyl ether-based inhibitors.  相似文献   

5.
One route to the design of lead compounds for rational drug design approaches to developing drugs against trypanosomiasis, Chagas' disease and leishmaniasis is to develop novel inhibitors of the parasite-specific enzyme trypanothione reductase. A lead inhibitor based on a peptoid structure was designed in the present study based on the known strong competitive inhibition of trypanothione reductase by N-benzoyl-Leu-Arg-Arg-beta-naphthylamide and N-benzyloxycarbonyl-Ala-Arg-Arg-4-methoxy- beta-naphthylamide. In the target peptoid the arginyl residues were replaced by alkylimidazolium units and the benzyloxycarbonyl group by the benzylaminocarbonyl function. The peptoid was synthesised using t-butoxycarbonyl protection chemistry and couplings were activated by 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate. The resulting peptoid was shown to be a competitive inhibitor of recombinant trypanothione reductase from Trypanosoma cruzi with a K(i) value of 179 microM and with only weak inhibition of human erythrocyte glutathione reductase (the inhibition of glutathione reductase was at least 291-fold weaker than of trypanothione reductase).  相似文献   

6.
Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.  相似文献   

7.
8.
S-nitrosylation of protein cysteine thiol groups has recently emerged as a widespread and important reversible post-translational protein modification, involved in redox signalling pathways of nitric oxide and reactive nitrogen species. S-nitrosoglutathione reductase (GSNOR), member of class III alcohol dehydrogenase family (EC 1.1.1.1), is considered the key enzyme in the catabolism of major low molecular S-nitrosothiol, S-nitrosoglutathione, and hence to control the level of protein S-nitrosylation. Changes of GSNOR activity after exposure to different abiotic stress conditions, including low and high temperature, continuous dark and de-etiolation, and mechanical injury, were investigated in important agricultural plants. Significantly higher GSNOR activity was found under normal conditions in leaves of Cucumis spp. genotype sensitive to biotrophic pathogen Golovinomyces cichoracearum. GSNOR activity was generally increased in all studied plants by all types of stress conditions. Strong down-regulation of GSNOR was observed in hypocotyls of etiolated pea plants, which did not recover to values of green plants even 168 h after the transfer of etiolated plants to normal light regime. These results point to important role of GSNOR during normal plant development and in plant responses to several types of abiotic stress conditions.  相似文献   

9.
The enzyme S-nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, gastrointestinal, and cardiovascular systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently in clinical development for acute asthma. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogs of N6022 focusing on carboxamide modifications on the pendant N-phenyl moiety. We have identified potent and novel GSNOR inhibitors that demonstrate efficacy in an ovalbumin (OVA) induced asthma model in mice.  相似文献   

10.
S-Nitrosoglutathione reductase (GSNOR) is a key regulator of protein S-nitrosylation, the covalent modification of cysteine residues by nitric oxide that can affect activities of many proteins. We recently discovered that excessive S-nitrosylation from GSNOR deficiency in mice under inflammation inactivates the key DNA repair protein O(6) -alkylguanine-DNA alkyltransferase and promotes both spontaneous and carcinogen-induced hepatocellular carcinoma. To explore further the mechanism of tumorigenesis due to GSNOR deficiency, we compared the protein expression profiles in the livers of wild-type and GSNOR-deficient (GSNOR(-/-) ) mice that were challenged with lipopolysaccharide to induce inflammation and expression of inducible nitric oxide synthase (iNOS). Two-dimensional difference gel electrophoresis analysis identified 38 protein spots of significantly increased intensity and 31 protein spots of significantly decreased intensity in the GSNOR(-/-) mice compared to those in the wild-type mice. We subsequently identified 19 upregulated and 19 downregulated proteins in GSNOR(-/-) mice using mass spectrometry. Immunoblot analysis confirmed in GSNOR(-/-) mice a large increase in the expression of the pro-inflammatory mediator S100A9, a protein previously implicated in human liver carcinogenesis. We also found a decrease in the expression of multiple members of the protein disulfide-isomerase (PDI) family and an alteration in the expression pattern of the endoplasmic reticulum (ER) chaperones in GSNOR(-/-) mice. Furthermore, altered expression of these proteins from GSNOR deficiency was prevented in mice lacking both GSNOR and iNOS. In addition, we detected S-nitrosylation of two members of the PDI protein family. These results suggest that S-nitrosylation resulting from GSNOR deficiency may promote carcinogenesis under inflammatory conditions in part through the disruption of inflammatory and ER stress responses.  相似文献   

11.

Background

S-nitrosoglutathione (GSNO) serves as a reservoir for nitric oxide (NO) and thus is a key homeostatic regulator of airway smooth muscle tone and inflammation. Decreased levels of GSNO in the lungs of asthmatics have been attributed to increased GSNO catabolism via GSNO reductase (GSNOR) leading to loss of GSNO- and NO- mediated bronchodilatory and anti-inflammatory actions. GSNOR inhibition with the novel small molecule, N6022, was explored as a therapeutic approach in an experimental model of asthma.

Methods

Female BALB/c mice were sensitized and subsequently challenged with ovalbumin (OVA). Efficacy was determined by measuring both airway hyper-responsiveness (AHR) upon methacholine (MCh) challenge using whole body plethysmography and pulmonary eosinophilia by quantifying the numbers of these cells in the bronchoalveolar lavage fluid (BALF). Several other potential biomarkers of GSNOR inhibition were measured including levels of nitrite, cyclic guanosine monophosphate (cGMP), and inflammatory cytokines, as well as DNA binding activity of nuclear factor kappa B (NFκB). The dose response, onset of action, and duration of action of a single intravenous dose of N6022 given from 30 min to 48 h prior to MCh challenge were determined and compared to effects in mice not sensitized to OVA. The direct effect of N6022 on airway smooth muscle tone also was assessed in isolated rat tracheal rings.

Results

N6022 attenuated AHR (ED50 of 0.015?±?0.002 mg/kg; Mean?±?SEM) and eosinophilia. Effects were observed from 30 min to 48 h after treatment and were comparable to those achieved with three inhaled doses of ipratropium plus albuterol used as the positive control. N6022 increased BALF nitrite and plasma cGMP, while restoring BALF and plasma inflammatory markers toward baseline values. N6022 treatment also attenuated the OVA-induced increase in NFκB activation. In rat tracheal rings, N6022 decreased contractile responses to MCh.

Conclusions

The significant bronchodilatory and anti-inflammatory actions of N6022 in the airways are consistent with restoration of GSNO levels through GSNOR inhibition. GSNOR inhibition may offer a therapeutic approach for the treatment of asthma and other inflammatory lung diseases. N6022 is currently being evaluated in clinical trials for the treatment of inflammatory lung disease.  相似文献   

12.
Nitric oxide (NO) is a key signaling molecule in plants. This analysis of Arabidopsis thaliana HOT5 (sensitive to hot temperatures), which is required for thermotolerance, uncovers a role of NO in thermotolerance and plant development. HOT5 encodes S-nitrosoglutathione reductase (GSNOR), which metabolizes the NO adduct S-nitrosoglutathione. Two hot5 missense alleles and two T-DNA insertion, protein null alleles were characterized. The missense alleles cannot acclimate to heat as dark-grown seedlings but grow normally and can heat-acclimate in the light. The null alleles cannot heat-acclimate as light-grown plants and have other phenotypes, including failure to grow on nutrient plates, increased reproductive shoots, and reduced fertility. The fertility defect of hot5 is due to both reduced stamen elongation and male and female fertilization defects. The hot5 null alleles show increased nitrate and nitroso species levels, and the heat sensitivity of both missense and null alleles is associated with increased NO species. Heat sensitivity is enhanced in wild-type and mutant plants by NO donors, and the heat sensitivity of hot5 mutants can be rescued by an NO scavenger. An NO-overproducing mutant is also defective in thermotolerance. Together, our results expand the importance of GSNOR-regulated NO homeostasis to abiotic stress and plant development.  相似文献   

13.
Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.  相似文献   

14.
15.
Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. In this study we show that curcumin inhibits ALR2 with an IC50 of 10 μM in a non-competitive manner, but is a poor inhibitor of closely-related members of the aldo-keto reductase superfamily, particularly aldehyde reductase. Results from molecular docking studies are consistent with the pattern of inhibition of ALR2 by curcumin and its specificity. Moreover, curcumin is able to suppress sorbitol accumulation in human erythrocytes under high glucose conditions, demonstrating an in vivo potential of curcumin to prevent sorbitol accumulation. These results suggest that curcumin holds promise as an agent to prevent or treat diabetic complications.  相似文献   

16.
Guan  Mei Yan  Zhu  Ya Xin  Liu  Xing Xing  Jin  Chong Wei 《Plant and Soil》2019,438(1-2):251-262
Plant and Soil - Increasing cadmium (Cd) contamination of agricultural soils is a serious problem. Identification of the mechanisms that control Cd uptake by roots is essential if we wish to...  相似文献   

17.
S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (?NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of ?NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.  相似文献   

18.
Torula corallina, a strain presently being used for the industrial production of erythritol, has the highest erythritol yield ever reported for an erythritol-producing microorganism. The increased production of erythritol by Torula corallina with trace elements such as Cu(2+) has been thoroughly reported, but the mechanism by which Cu(2+) increases the production of erythritol has not been studied. This study demonstrated that supplemental Cu(2+) enhanced the production of erythritol, while it significantly decreased the production of a major by-product that accumulates during erythritol fermentation, which was identified as fumarate by instrumental analyses. Erythrose reductase, a key enzyme that converts erythrose to erythritol in T. corallina, was purified to homogeneity by chromatographic methods, including ion-exchange and affinity chromatography. In vitro, purified erythrose reductase was significantly inhibited noncompetitively by increasing the fumarate concentration. In contrast, the enzyme activity remained almost constant regardless of Cu(2+) concentration. This suggests that supplemental Cu(2+) reduced the production of fumarate, a strong inhibitor of erythrose reductase, which led to less inhibition of erythrose reductase and a high yield of erythritol. This is the first report that suggests catabolite repression by a tricarboxylic acid cycle intermediate in T. corallina.  相似文献   

19.
The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious S-nitrosoglutathione reductase (GSNOR) inhibitor and is currently undergoing clinical development for the treatment of acute asthma. GSNOR is a member of the alcohol dehydrogenase family (ADH) and regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). Reduced levels of GSNO, as well as other nitrosothiols (SNOs), have been implicated in the pathogenesis of many diseases including those of the respiratory, cardiovascular, and gastrointestinal systems. Preservation of endogenous SNOs through GSNOR inhibition presents a novel therapeutic approach with broad applicability. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on removal of cytochrome P450 inhibition activities. We identified potent and novel GSNOR inhibitors having reduced CYP inhibition activities and demonstrated efficacy in a mouse ovalbumin (OVA) model of asthma.  相似文献   

20.
Dihydrofolate reductase (DHFR) is a ubiquitous enzyme involved in major biological process, including DNA synthesis and cancer inhibition, and its modulation is the object of extensive structural, kinetic, and pharmacological studies. In particular, earlier studies showed that green tea catechins are powerful inhibitors of bovine liver and chicken liver DHFR. In this article, we report the results of inhibition kinetics for the enzyme from another source (DHFR from E. coli) exerted by (-)-epigallocatechingallate (EGCG). Using different analytical techniques, we reported that EGCG acts as a bisubstrate inhibitor on the bacterial DHFR. Moreover, the combined approach of biosensor, kinetic, and molecular modelling analysis disclosed the ability of EGCG to bind to the enzyme both on substrate (DHF) and cofactor (NADPH) site. Collectively, our data have confirmed the selectivity of antifolate compounds with respect to the different source of enzyme (bacterial or mammalian DHFR) and the possible role of tea catechins as chemopreventive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号