首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Sparkuhl  G. Setterfield 《Planta》1977,135(3):267-273
In order to examine the relation of protein synthesis to the onset of growth, changes in ribosome content and activity were compared in aged, metabolically active Jerusalem artichoke (Helianthus tuberosus L.) slices incubated in water or 2,4-dichlorophenoxyacetic acid+kinetin. In water, cells do not grow or divide and rRNA and protein levels remain constant. The percentage membrane-bound (mb) ribosomes drops from 25% to 16% during 24h. At the same time the proportion of ribosomes active in protein synthesis in both free and mb populations declines from about 69% to 54%. In auxin+kinetin, cell expansion occurs and is accompanied by a 3-fold increase in rRNA and a 50% increase in total protein content. The percentage mb ribosomes remains at 25% throughout 48 h of growth. During the first 24h of growth 70% of ribosomes in both free and mb populations are active; this value declines to near water levels at 48 h. Considering the large increase in total ribosomes the number of synthetically active ribosomes is substantially increased during growth. 5-Fluorouracil (5-FU) does not inhibit hormone induced growth but does depress total rRNA content by about one-third. It also reduces [3H]uridine incorporation into ribosomes by 70% and the newly made ribosomes are mostly inactive in protein synthesis. On the other hand, the inhibitor does not significantly affect the proportion of total ribosomes active in protein synthesis and only partially reduces protein accumulation during the second 24 h of growth. It is suggested that while ribosome production is reduced in 5-FU, ribosome turnover is also retarded resulting in retention of near normal capacity for protein synthesis and growth.  相似文献   

2.
Summary The susceptibility of cells from various species of Saccharomyces and Kluyveromyces was tested against different types of protein synthesis inhibitors. Minimal inhibitory concentrations were determined for each yeast species and the sensitivity of their ribosomes in cell-free extracts was tested. Two aminoglycosides, paromomycin and hygromycin B were assayed for capacity to stimulate translation errors with ribosomes of yeast species showing different minimal inhibitory concentrations in vivo. In many cases a correlation exists between natural and in vitro resistance suggesting that some natural antibiotic resistances are ribosomal.  相似文献   

3.
Wild-type cells of the unicellular green alga Chlamydomonas reinhardi have been grown for several generations in the presence of rifampicin, an inhibitor of chloroplast DNA-dependent RNA polymerase, spectinomycin and chloramphenicol, two inhibitors of protein synthesis on chloroplast ribosomes, and cycloheximide, an inhibitor of protein synthesis on cytoplasmic ribosomes. The effects of cycloheximide are complex, and it is concluded that this inhibitor cannot give meaningful information about the cytoplasmic control over the synthesis of chloroplast components in long-term experiments with C. reinhardi. In the presence of acetate and at the appropriate concentrations, the three inhibitors of chloroplast protein synthesis retard growth rates only slightly and do not affect the synthesis of chlorophyll; however, photosynthetic rates are reduced fourfold after several generations of growth. Each inhibitor produces a similar pattern of lesions in the organization of chloroplast membranes. Only rifampicin prevents the production of chloroplast ribosomes.  相似文献   

4.
Undeveloped encysted embryos of the brine shrimp, Artemia salina, contain a large quantity of metabolically repressed 80S ribosomes. These ribosomes appear to be inactive or nonfunctional due to the presence of an inhibitor protein on their 60S subunit. During development the inhibitor is released or inactivated and the 80S ribosomes and their constituent subunits become fully functional in a poly(U)-directed protein-synthesizing system. The inefficiency of most 80S ribosomes from undeveloped Artemia embryos appears to be due to their inability to form stable complexes with poly(U) and phe-tRNA in the presence of elongation factor, EF-1. A potent inhibitor of protein synthesis has also been found in the 105,000g supernatant fraction from undeveloped Artemia embryos. The exact nature of this inhibitor has not been ascertained but it appears to be a heat-labile protein devoid of RNase and protease activity. It is not known whether this inhibitor is the same as that associated with 60S ribosomal subunits of undeveloped cyst ribosomes.  相似文献   

5.

Background  

Cycloheximide is a protein synthesis inhibitor that acts specifically on the 60S subunit of eukaryotic ribosomes. It has previously been shown that a short incubation of Dictyostelium discoideum amoebae in cycloheximide eliminates fluid phase endocytosis.  相似文献   

6.
Summary An examination of the effect of the aminoglycoside antibiotics paromomycin and neomycin on mitochondrial ribosome function in yeast has been made. Both antibiotics are potent inhibitors of protein synthesis in isolated mitochondria. With isolated mitochondrial ribosomes programmed with polyuridylic acid (poly U), the drugs are shown to inhibit polyphenylalanine synthesis at moderately high concentrations (above 100 g/ml). At lower concentrations (about 10 g/ml), paromomycin and neomycin cause a 2–3 fold stimulation in the extent of misreading of the UUU codons in poly U, over and above the significant level of misreading catalyzed by the ribosomes in the absence of drugs.Comparative studies have been made between a paromomycin sensitive strain D585-11C and a mutant strain 4810P carrying the parl-r mutation in mtDNA, which leads tohigh resistance to both paromomycin and neomycin in vivo. A high level of resistance to these antibiotics is observed in strain 4810P at the level of mitochondrial protein synthesis in vitro. Whilst the degree of resistance of isolated mitochondrial ribosomes from strain 4810P judged by the inhibition of polyphenylalanine synthesis by paromomycin and neomycin is not extensive, studies on misreading of the poly U message promoted by these drugs demonstrate convincingly the altered properties of mitochondrial ribosomes from the mutant strain 4810P. These ribosomes show resistance to the stimulation of misreading of the codon UUU brought about by paromomycin and neomycin in wild-type mitochondrial ribosomes. Although strain 4810P was originally isolated as being resistant to paromomycin, in all the in vitro amino acid incorporation systems tested here, the 4810P mitochondrial ribosomes show a higher degree of resistance to neomycin than to paromomycin.It is concluded that the parl-r mutation in strain 4810P affects a component of the mitochondrial ribosome, possibly by altering the 15S rRNA or a protein of the small ribosomal subunit. The further elucidation of the functions in the ribosomes that are modified by the parl-r mutation was hampered by the inability of current preparations of yeast mitochondrial ribosomes to translate efficiently natural messenger RNAs from the several sources tested.  相似文献   

7.
Resistance to streptomycin in bacterial cells often results from a mutation in the rpsL gene that encodes the ribosomal protein S12. We found that a particular rpsL mutation (K87E), newly identified in Escherichia coli, causes aberrant protein synthesis activity late in the growth phase. While protein synthesis decreased with age in cells in the wild-type strain, it was sustained at a high level in the mutant, as determined using living cells. This was confirmed using an in vitro protein synthesis system with poly(U) and natural mRNAs (GFP mRNA and CAT mRNA). Other classical rpsL mutations (K42N and K42T) tested did not show such an effect, indicating that this novel characteristic is typical of ribosomes bearing the K87E mutant form of S12, although the K87E mutation conferred the streptomycin resistance and error-restrictive phenotypes also seen with the K42N and K42T mutations. The K87E (but not K42N or K42T) mutant ribosomes exhibited increased stability of the 70S complex in the presence of low concentrations of magnesium. We propose that the aberrant activation of protein synthesis at the late growth phase is caused by the increased stability of the ribosome.Communicated by W. Goebel  相似文献   

8.
After infection of mouse L cells with mengovirus, there is a rapid inhibition of protein synthesis, a concurrent disaggregation of polysomes, and an accumulation of 80S ribosomes. These 80S ribosomes could not be chased back into polysomes under an elongation block. The infected-cell 80S-ribosome fraction contained twice as much initiator methionyl-tRNA and mRNA as the analogous fraction from uninfected cells. Since the proportion of 80S ribosomes that were resistant to pronase digestion also increased after infection, these data suggest that the accumulated 80S ribosomes may be in the form of initiation complexes. The specific protein synthetic activity of polysomal ribosomes also decreased with time of infection. However, the transit times in mock-infected and infected cells remained the same. Cell-free translation systems from infected cells reflected the decreased protein synthetic activity of intact cells. The addition of reticulocyte initiation factors to such systems failed to relieve the inhibition. Fractionation of the infected-cell lysate revealed that the ribosomes were the predominant target affected. Washing the infected-cell ribosomes with 0.5 M KCI restored their translational activity. In turn, the salt wash from infected-cell ribosomes inhibited translation in lysates from mock-infected cells. The inhibitor in the ribosomal salt wash was temperature sensitive and micrococcal nuclease resistant. A model is proposed wherein virus infection activates (or induces the synthesis of) an inhibitor that binds to ribosomes and stops translation after the formation of the 80S-ribosome initiation complex but before elongation. The presence of such an inhibitor on ribosomes could prevent them from being remobilized into polysomes in the presence of an inhibitor of polypeptide elongation.  相似文献   

9.
The chloroplast protein synthesis factor responsible for the translocation step of polypeptide synthesis on chloroplast ribosomes (chloroplast elongation factor G [EF-G]) has been detected in whole cell extracts and in isolated chloroplasts from Euglena gracilis. This factor can be detected by its ability to catalyze translocation on 70 S prokaryotic ribosomes such as those from E. coli. Chloroplast EF-G is present in low levels when Euglena is grown in the dark and can be induced more than 20-fold when the organism is grown in the light. The induction of this factor by light is inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. However, inhibitors of chloroplast protein synthesis such as streptomycin or spectinomycin have no effect on the induction of this factor by light. Furthermore, chloroplast EF-G can be partially induced by light in an aplastidic mutant (strain W3BUL) which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-G resides in the nuclear genome, and that this protein is synthesized on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts.  相似文献   

10.
Summary Increasing age ofRhizoctonia solani cells was accompanied by a decrease in protein synthesis but not by a fall in the number of ribosomes present. There was, however, a shift from predominantly polyribosomes in young cells actively synthesizing protein, to mainly monoribosomes in older less active cells, and it is suggested that protein synthesis is restricted in these older cells by some defect at the initiation step of protein synthesis. The major site of protein synthesis throughout ageing was the free ribosome fraction with little or no contribution from membrane-bound ribosomes. For reasons not understood, the free ribosomes failed to sediment through 2.0 M sucrose, and only by using 1.4 M sucrose were good separations obtained.  相似文献   

11.
A reduced peptide bond analogue of RA-VII, [Tyr-5-Ψ(CH(2)NMe)-Tyr-6]RA-VII (3), was designed and synthesized. The key reduced cycloisodityrosine unit was prepared by reduction of the cycloisodityrosine derived from natural RA-VII, followed by connection with the tetrapeptide segment to afford a hexapeptide. Subsequent macrocyclization of the hexapeptide with FDPP under dilute conditions gave 3. Analogue 3 showed cytotoxic activity against P-388 cells, but its activity was much weaker than that of parent peptide RA-VII.  相似文献   

12.
Using several natural messenger RNA's—f2 RNA, Qβ RNA, T7 RNA, T4 early mRNA, T4 late mRNA and Escherichia coli RNA—ribosomes isolated from cells either 5 or 12 minutes after T4 infection direct synthesis of only 35 to 70% as much protein as do ribosomes from uninfected cells. However, with poly(U) or formaldehyde-treated f2 RNA message, both types of ribosomes work equally well. Experiments mixing salt-washed ribosomes and initiation factors from these cells show, in agreement with work of others, that the reduction with natural messages is due only to changes in the initiation factors.  相似文献   

13.
The chloroplast protein synthesizing factor responsible for the binding of aminoacyl-tRNA to ribosomes (EF-Tuchl) has been identified in extracts of Euglena gracilis. This factor is present in low levels when Euglena is grown in the dark and can be induced more than 10-fold when the organism is exposed to light. The induction of the chloroplast EF-Tu by light is inhibited by streptomycin, an inhibitor of protein synthesis on chloroplast ribosomes, indicating that protein synthesis within the chloroplast itself is required for the induction of this factor. The induction of the chloroplast EF-Tu by light is also inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. The effect of cycloheximide probably results from the inhibition of chloroplast ribosome synthesis which requires the synthesis of many proteins by the cytoplasmic translational system. Chloroplast EF-Tu cannot be induced by light in an aplastidic mutant (strain W3BUL) of Euglena which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-Tu resides in the chloroplast genome and that this protein is synthesized within the organelle itself.  相似文献   

14.
15.
An active microsomal system from 48-h germinating seeds of Vigna sinensis (L.) Savi has now been developed. It can incorporate amino acids into protein under both in vitro and in vivo conditions, provided dithiothreitol (a protective reagent for SH groups) and phenylthiourea (an inhibitor of phenol oxidase) are present in the buffer system for extraction; and provided the assay mixture contains added dithiothreitol. The system consists of microsomes or ribosomes, tRNA or pH 5 fraction and 20 natural amino acids, ATP and an ATP-generating system and GTP with requirement for Mg ions. The cell fractions possess aminoacyl-RNA synthetase activity as indicated by the aminoacylhydroxamate formation. Microsomal synthesis is stimulated by exogenous tRNA from Escheriehia coli or rat liver and sensitive to various inhibitors such as cyclo-heximide, chloramphenicol, fusidic acid. The ribosomal transfer reaction has absolute dependence on the microsomal wash, on the crude enzyme from the same participate source, and on a synthetic messenger. It is greatly suppressed by fusidic acid and by cycloheximide.  相似文献   

16.
Inhibitors of nucleic acid and protein synthesis were applied to excised green pea stem sections in the absence and presence of IAA and the effects on growth noted as a function of time. Actinomycin D, which inhibits de novo RNA synthesis, ribonuclease, which degrades RNA, and puromycin, which prevents transfer of aminoacyl residues into the growing polypeptide chain, inhibit section growth only after lengthy lag periods of, respectively, 2, 8 and 5 hr. For actinomycin D and ribonuclease, preincubation in the inhibitor alone, prior to IAA application, does not reduce the lag period, indicating that the lag is not caused by slow penetration of the inhibitor. By contrast, chloramphenicol, which prevents binding of messenger RNA to ribosomes, and p-fluorophenylalanine, a competitive antagonist of phenylalanine, produce significant inhibitions in the first hour. The implications of these results for the mechanism of auxin action are considered.  相似文献   

17.
P. I. Payne  D. Bouter 《Planta》1969,84(3):263-271
Summary Changes in the quantities of free and membrane-bound ribosomes were followed in the cotyledons of developing seeds. During the phase of storage protein synthesis, free and membrane bound ribosomes do not interchange, and as both classes synthesise protein in vivo, it is possible that they may synthesise different groups of proteins. This suggestion is discussed in relationship to the developing cotyledon.  相似文献   

18.
Chloroplasts observed, by electron microscopy, to be intact and uncontaminated, with high rates of light-dependent protein synthesis and CO2 fixation were isolated from cells grown on low-vitamin-B12 medium in the light or from cells grown in the same medium in the dark and then exposed to light for 36 h. Both types of chloroplasts were active but less variability was encountered with developing chloroplasts from 36-h cells. The 36-h chloroplasts showed good light-dependent incorporation of 5-amino-levulinic acid (ALA) or l-glutamic acid into chlorophyll (Chl) a which was linear for approx. 1 h. The specific activity of the Chl a remained the same after conversion to pheophytin a, methylpheophorbide a or pyromethylpheophorbide a and rechromatography, indicating that the label was in the tetrapyrrole. Incorporation of ALA was inhibited by levulinic acid, and by chloramphenicol and other inhibitors of translation of 70S-type chloroplast ribosomes at concentrations which did not appreciably inhibit photosynthesis but which blocked plastid protein synthesis nearly completely. Cycloheximide, an inhibitor of translation on 87S cytoplasmic ribosomes of Euglena, was without effect. The 70S inhibitors did not block uptake of labeled ALA. Although labeled glycine was taken up by the plastids, no incorporation into Chl a was observed. Thus the developing chloroplasts appear to contain all of the enzymatic machinery necessary to convert glutamic acid to Chl via the C5 pathway of ALA formation but the Shemin pathway from succinyl coenzyme A and glycine to ALA appears to be absent. The requirement for plastid protein synthesis concomitant with Chl synthesis indicates a regulatory interaction and also indicates that at least one protein influencing Chl synthesis is synthesized on 70S-type plastid ribosomes and is subject to metabolic turnover.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll  相似文献   

19.
Inhibition of protein synthesis by puromycin (100 γ/ml) is known to inhibit the synthesis of ribosomes. However, ribosomal precursor RNA (45S) continues to be synthesized, methylated, and processed. Cell fractionation studies revealed that, although the initial processing (45S → 32S + 16S) occurs in the presence of puromycin, the 16S moiety is immediately degraded. No species of ribosomal RNA can be found to have emerged from the nucleolus. The RNA formed in the presence of puromycin is normal as judged by its ability to enter new ribosomal particles after puromycin is removed. This sequence of events is not a result of inhibition of protein synthesis, for cycloheximide, another inhibitor of protein synthesis, either alone or in combination with puromycin allows the completion of new ribosomes.  相似文献   

20.
The effect of the protein synthesis inhibitor II from barley seeds (Hordeum sp.) on protein synthesis was studied in rabbit reticulocyte lysates. Inhibitor treatment of the lysates resulted in a rapid decrease in amino acid incorporation and an accumulation of heavy polysomes, indicating an effect of the inhibitor on polypeptide chain elongation. The protein synthesis inhibition was due to a catalytic inactivation of the large ribosomal subunit with no effect on the small subparticle. The inhibitor-treated ribosomes were fully active in participating in the EF-1-dependent binding of [14C]phenylalanyl-tRNA to poly(U)-programmed ribosomes in the presence of GTP and the binding of radioactively labelled EF-2 in the presence of GuoPP[CH2]P. Furthermore, the ribosomes were still able to catalyse peptide-bond formation. However, the EF-1- and ribosome-dependent hydrolysis of GTP was reduced by more than 40% in the presence of inhibitor-treated ribosomes, while the EF-2- and ribosome-dependent GTPase remained unaffected. This suggests that the active domains involved in the two different GTPases are non-identical. Treatment of reticulocyte lysates with the barley inhibitor resulted in a marked shift of the steady-state distribution of the ribosomal phases during the elongation cycle as determined by the ribosomal content of elongation factors. Thus, the content of EF-1 increased from 0.38 mol/mol ribosome to 0.71 mol/mol ribosome, whereas the EF-2 content dropped from 0.20 mol/mol ribosome at steady state to 0.09 mol/mol ribosome after inhibitor treatment. The data suggest that the inhibitor reduces the turnover of ribosome-bound ternary EF-1 · GTP · aminoacyl-tRNA complexes during proof-reading and binding of the cognate aminoacyl-tRNA by inhibiting the EF-1-dependent GTPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号