首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the impacts of forest fragmentation on Araucaria angustifolia populations, we evaluated the genetic diversity and mating system using SSR markers and open-pollinated seeds from four populations of varying sizes and spatial isolation, in and around one of the best-conserved Araucaria Forest remnants in Southern Brazil. The four population types of A. angustifolia include: (1) a continuous forest; (2) a physically isolated cluster located 2 km from the continuous forest; (3) an open population in a field located between the cluster and continuous forest; and (4) a fragment on a private property located 5 km from the cluster. Approximately 28 seeds were collected from ten reproductive trees in each population. We found higher amounts of alleles (113) and exclusive alleles (25) in the continuous forest than in the other populations. The multilocus paternity correlation was significantly higher and effective number of pollen donors was significantly lower in the private population, decreasing the diversity and consequently the variance effective size of families sampled from that population. However, despite its isolation from the other studied fragments, the private population had the second highest number of alleles as well as unique alleles from the other populations. Therefore, strategies for A. angustifolia conservation should focus not only on larger populations, such as those found in protected areas, but also include smaller and isolated fragments on private properties as these populations are able to maintain high levels of genetic diversity and functional connectivity between isolated stands across a landscape.  相似文献   

2.
Gene flow via seed and pollen is a primary determinant of genetic and species diversity in plant communities at different spatial scales. This paper reviews studies of gene flow and population genetic structure in tropical rain forest trees and places them in ecological and biogeographic context. Although much pollination is among nearest neighbors, an increasing number of genetic studies report pollination ranging from 0.5–14 km for canopy tree species, resulting in extensive breeding areas in disturbed and undisturbed rain forest. Direct genetic measures of seed dispersal are still rare; however, studies of fine scale spatial genetic structure (SGS) indicate that the bulk of effective seed dispersal occurs at local scales, and we found no difference in SGS (Sp statistic) between temperate (N?=?24 species) and tropical forest trees (N?=?15). Our analysis did find significantly higher genetic differentiation in tropical trees (F ST?=?0.177; N?=?42) than in temperate forest trees (F ST?=?0.116; N?=?82). This may be due to the fact that tropical trees experience low but significant rates of self-fertilization and bi-parental inbreeding, whereas half of the temperate tree species in our survey are wind pollinated and are more strictly allogamous. Genetic drift may also be more pronounced in tropical trees due to the low population densities of most species.  相似文献   

3.
In order to evaluate the consequences of forest fragmentation on populations of Magnolia obovata, we compared genetic diversity and reproductive characteristics at two nearby sites, one conserved and one fragmented. The genetic diversity between adults trees of the different sites was not significantly different. However, saplings in the conserved site showed a significantly higher genetic diversity than both adult trees in the conserved site and saplings in the fragmented sites; this was found to be the result of the larger gene flow into the conserved site. The density of the adult trees was significantly related to all of the reproductive traits analyzed (fertilization of ovules, insect attack to seeds, ovules that developed into seeds and outcrossing at the stage of seeds) at both sites. At both sites, fertilization of ovules and insect attack on seeds were positively correlated to adult tree density while outcrossing rate was negatively correlated to adult tree density. The fertilization of ovules and outcrossing were more dependent on adult tree density in the fragmented site than in the conserved site. The probability of ovules developing into outcrossed seeds showed a negative correlation with adult tree density at both sites, indicating the advantage of low density for this species and possibly implying a resilience to habitat fragmentation. A two-generation-analysis did not identify significant differences between sites in terms of the structure of the pollen pool and the number of pollen donors. Although fragmentation affected reproductive characteristics, the effect on seedling establishment and subsequent survival remains to be determined. Proposals for future studies that will assist in the development of management strategies for forests suffering fragmentation are made.  相似文献   

4.
Dutch elm disease has severely reduced the number of large trees of U. glabra in Denmark. Consequently, the distance between large trees has increased and the overall density of the species has decreased. Patches of small trees with stem diameters up to 10 cm are, however, relatively frequent. With four microsatellites we studied potential differences in genetic diversity, mating patterns and pollen flow in trees of U. glabra that occur either in a continuous forest (Suserup Forest) or isolated in the open land. We found no indications of selfing in forest or open land but indications of biparental inbreeding in offspring of isolated trees. Estimates of effective pollen donors (N ep) and minimum number of pollen donors (N p) were alike in forest and open land (N ep of 31 and 34 and N p of 4 to >6 and 3 to >6, respectively). The number of alleles was also very similar. With indirect methods we found that average pollen dispersal was 104 m under forest conditions. The average distance between the isolated trees and their potential pollen donors was further, thus suggesting that effective pollen in the open land on average moves further than in a dense forest. Finally, 28% of small trees (diameters up to 10 cm) produced fruits. Reproduction at a young age may be a key stone in the survival of U. glabra as the vectors of the disease prefer older trees.  相似文献   

5.
Assessing the population genetic structure of threatened species is important for developing successful conservation strategies. In this study, we evaluated the fine-scale spatial genetic structure (SGS) of Dalbergia nigra from a regenerating secondary forest fragment and compared it with previous data from a primary forest of a large reserve. A total of 107 adult and 111 saplings were mapped and genotyped for seven microsatellite loci. The genetic diversity was high and similar in adults (H e?=?0.682) and saplings (H e?=?0.680). The spatial extent of SGS was higher in adults than in saplings. Overlapping generations in the potentially reproductive individuals is the likely explanation for the higher SGS in adults (Sp?=?0.016) in relation to the saplings (Sp?=?0.010). The SGS in the adults from the secondary forest fragment was similar to that found in the primary forest. Considering the SGS found in adults, from both the secondary and primary forests, seeds for ex situ conservation should be collected from trees at least 80 m apart to reduce the genetic similarity between samples. These results highlight the importance of preserving small forest fragments to allow successful regeneration and maintenance of the genetic diversity in D. nigra.  相似文献   

6.
In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion.  相似文献   

7.
Wind-pollinated trees such as conifers have been considered relatively resistant to the deleterious effects of fragmentation and low density by virtue of their abundant production of airborne pollen. However, some studies indicated that population density affects the mating system even in wind-pollinated trees. In the present study, we examined the mating system and genetic structure of an endangered population (Boso) of Pinus parviflora var. parviflora, whose size has fallen by 80 % in only the last quarter century. Genetic analyses using four nuclear microsatellite markers showed that the population was in Hardy–Weinberg equilibrium and harbored a high level of genetic variation comparable to that of a larger population. Additionally, only weak genetic structure was detected among local patches. On the other hand, the outcrossing rate of seeds in the Boso population was much lower (0.277 from MLTR and 0.297 from paternity analysis) than that found in a larger population of the species (0.778 from MLTR). The outcrossing rate for each mother tree was found to correlate positively with local density around the tree in the Boso population. This suggests that the extensive selfing would be a direct result of pollen limitation caused by the extremely low density of the population: an average of 0.201 trees per hectare for local patches. Because the adult population was in HWE, it is likely that the selfed seeds produced at present cannot contribute to population regeneration. The present study suggests that low population density would increase extinction risk even for wind-pollinated conifer populations.  相似文献   

8.
Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow.  相似文献   

9.
Analyses of the spatial distribution pattern, spatial genetic structure and genetic diversity were carried out using a 33-ha plot in a hill dipterocarp forest for three dipterocarps with different habitat preferences, i.e. Shorea curtisii on the ridges, Shorea leprosula in the valleys and Shorea macroptera both on the ridges and in the valleys. The significant spatial aggregation in small-diameter trees of all the three species was explained by limited seed dispersal. At the large-diameter trees, only S. macroptera showed random distribution and this might further prove that S. macroptera is habitat generalist, whilst S. curtisii and S. leprosula are habitat specific. The levels of genetic diversity estimated based on five microsatellite loci were high and comparable in all the three studied species. As the three studied species reproduced mainly through outcrossing, the observed high levels of genetic diversity might support the fact that the plant mating system can be used as guideline to infer the levels of genetic diversity, regardless of whether the species is habitat specific or habitat generalist. The lack of spatial genetic structure but significant aggregation in the small-diameter trees of all the three species might indicate limited seed dispersal but extensive pollen flow. Hence, if seed dispersal is restricted but pollen flow is extensive, significant spatial aggregation but no spatial genetic structure will be observed at the small-diameter trees, regardless of whether the species is habitat specific or habitat generalist. The inferred extensive pollen flow might indicate that energetic pollinators are involved in the pollination of Shorea species in the hill dipterocarp forests.  相似文献   

10.
The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.  相似文献   

11.
Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns and, consequently, influence genetic diversity via the mating process. We examined the pollen dispersal pattern and mating system of Shorea maxwelliana, the flowers of which are larger than those of Shorea species belonging to section Mutica which are thought to be pollinated by thrips (weak flyers). A Bayesian mating model based on the paternity of seeds collected from mother trees during sporadic and mass flowering events revealed that the estimated pollen dispersal kernel and average pollen dispersal distance were similar for both flowering events. This evidence suggests that the putative pollinators – small beetles and weevils – effectively contribute to pollen dispersal and help to maintain a high outcrossing rate even during sporadic flowering events. However, the reduction in pollen donors during a sporadic event results in a reduction in effective pollen donors, which should lead to lower genetic diversity in the next generation derived from seeds produced during such an event. Although sporadic flowering has been considered less effective for outcrossing in Shorea species that depend on thrips for their pollination, effective pollen dispersal by the small beetles and weevils ensures outcrossing during periods of low flowering tree density, as occurs in a sporadic flowering event.  相似文献   

12.
Genetic variation within a fragmented population of swietenia humilis zucc   总被引:6,自引:0,他引:6  
With large tracts of once continuous forest now modified by human use to leave reduced and highly fragmented stands of trees, the determination of the genetic consequences of forest fragmentation is a priority for ascertaining the conservation value of resultant stands, and in formulating sustainable management strategies. The levels and distribution of genetic diversity over 10 microsatellite loci were investigated within a fragmented population of the neotropical tree Swietenia humilis Zucc. High levels of genetic variation, typical of a highly outcrossing species, were found in all fragments at all loci (mean HE = 0.548). The majority of the variation was within rather than between fragments (RST = 0.032), giving high indirect estimates of gene flow (Nm = 8.9), probably reflecting the genetic structure of the trees present under more continuous forest. A high proportion of loci also showed significant departures from Hardy-Weinberg equilibrium with associated significant levels of FIS. The initial effects of fragmentation were, however, seen in the fragments through the loss of low-frequency alleles present in the continuous 'control' stand. The percentage of this allelic loss increased with a decrease in fragment size.  相似文献   

13.
L Browne  K Ottewell  J Karubian 《Heredity》2015,115(5):389-395
Habitat loss and fragmentation may impact animal-mediated dispersal of seed and pollen, and a key question is how the genetic attributes of plant populations respond to these changes. Theory predicts that genetic diversity may be less sensitive to such disruptions in the short term, whereas inbreeding and genetic structure may respond more strongly. However, results from studies to date vary in relation to species, context and the parameter being assessed, triggering calls for more empirical studies, especially from the tropics, where plant–animal dispersal mutualisms are both disproportionately common and at risk. We compared the genetic characteristics of adults and recruits in a long-lived palm Oenocarpus bataua in a recently fragmented landscape (<2 generations) in northwest Ecuador using a suite of 10 polymorphic microsatellite markers. We sampled individuals from six forest fragments and one nearby continuous forest. Our goal was to assess short-term consequences of fragmentation, with a focus on how well empirical data from this system follow theoretical expectations. Mostly congruent with predictions, we found stronger genetic differentiation and fine-scale spatial genetic structure among recruits in fragments compared with recruits in continuous forest, but we did not record differences in genetic diversity or inbreeding, nor did we record any differences between adults in fragments and adults in continuous forest. Our findings suggest that genetic characteristics of populations vary in their sensitivity to change in response to habitat loss and fragmentation, and that fine-scale spatial genetic structure may be a particularly useful indicator of genetic change in recently fragmented landscapes.  相似文献   

14.
Heliconia uxpanapensis (Heliconiaceae) is an outcrossing endemic herb that grows within continuous and fragmented areas of the tropical rain forest of southeast Veracrúz (México). The genetic diversity, population differentiation, and genetic structure of seven populations of the studied species were assessed using inter‐simple sequence repeat) markers. Population differentiation was moderately high (FST range: 0.18–0.22) and indirect estimates of gene flow were rather low (Nm=0.65–0.83). Analysis of molecular variance indicated that the populations explained 22.2 percent of the variation, while individuals within the populations accounted for 77.8 percent. The similar and high level of genetic diversity found within populations of the continuous and fragmented forest suggests that H. uxpanapensis has not suffered yet the expected negative effect of fragmentation. Genetic structure analyses indicated the presence of fewer genetic clusters (K=4) than populations (N=7). Three of the four fragmented forest populations were assigned each to one of the clusters found within the continuous forest, suggesting the absence of a negative fragmentation effect on the amount and distribution of genetic variation. Given the significant genetic structure combined with high genetic diversity and low levels of gene flow, theoretical simulations indicated that H. uxpanapensis might be highly susceptible to changes in the mating system, which promotes inbreeding within fragmented populations. Thus, future conservation efforts in this species should be directed to ensure that levels of gene flow among populations are sufficient to prevent an increment in the magnitude of inbreeding within fragments.  相似文献   

15.
The spatial distribution of genetic diversity is a product of recent and historical ecological processes, as well as anthropogenic activities. A current challenge in population and conservation genetics is to disentangle the relative effects of these processes, as a first step in predicting population response to future environmental change. In this investigation, we compare the influence of contemporary population decline, contemporary ecological marginality and postglacial range shifts. Using classical model comparison procedures and Bayesian methods, we have identified postglacial range shift as the clear determinant of genetic diversity, differentiation and bottlenecks in 29 populations of butternut, Juglans cinerea L., a North American outcrossing forest tree. Although butternut has experienced dramatic 20th century decline because of an introduced fungal pathogen, our analysis indicates that recent population decline has had less genetic impact than postglacial recolonization history. Location within the range edge vs. the range core also failed to account for the observed patterns of diversity and differentiation. Our results suggest that the genetic impact of large-scale recent population losses in forest trees should be considered in the light of Pleistocene-era large-scale range shifts that may have had long-term genetic consequences. The data also suggest that the population dynamics and life history of wind-pollinated forest trees may provide a buffer against steep population declines of short duration, a result having important implications for habitat management efforts, ex situ conservation sampling and population viability analysis.  相似文献   

16.
Selective logging is one of several silvicultural practices used in sustainable forest management in the lowland dipterocarp forest in Indonesia. Selecting only trees with diameters >50 cm for logging can reduce the density of reproductive trees, thereby affecting pollen dispersal and influencing the mating system among remaining trees. We evaluated the effect of logging rotations on the mating system, gene flow and genetic diversity in populations of Shorea parvifolia in primary forest, and in first and second rotation forest. Our results revealed that multiple (or at least two) selective logging events with a 30-year logging rotation had a significant impact on the genetic diversity of pollen clouds. However, the average pollen dispersal distance did not differ significantly among the multiple selective logging rotations. The multiple rotations reduced the outcrossing rate and the number effective of pollen donors in the logged forest. Moreover, the number of pollen donors in a plot was affected by the basal area of reproductive trees present. These results suggest that reducing the number of reproductive trees by logging with multiple rotations might increase the bi-parental inbreeding rate due to the reduction in density of reproductive trees in a selectively logged forest. We conclude that multiple rotations with a 30-year cycle of selective logging as currently practiced would reduce the density of reproductive trees, and would not be sustainable in terms of maintaining genetic diversity in tropical forests of Southeast Asia.  相似文献   

17.
Theoretical models and computer simulations of the genetic structure of a continuous population predict the existence of patches of highly inbred individuals when gene flow within the population is limited. A map of the three genotypes of a two-allele locus is expected to exhibit patches of homozygotes embedded in a matrix of heterozygotes, when gene flow is limited. A search for such patch structure was made on a 160 × 160 m plot within a continuous 60+ ha old-growth stand of Quercus laevis (turkey oak). Approximately 3400 trees were genotyped for 9 polymorphic loci using starch-gel electrophoresis, and the genetic structure was analyzed with spatial autocorrelation (both nominal and interval), hierarchical F statistics, and number-of-alleles-in-common. Adults (diameter at breast height > 0) and juveniles were analyzed separately but showed similar structure. While no distinct patch structure was found, a greater degree of relatedness was observed on a scale of 5 m–10 m than at greater distances, probably because of the limited acorn dispersal from maternal trees and a small amount of cloning by root sprouts. A computer simulation of a 10,000 tree forest breeding for 10,000 yr indicates that the effective neighborhood sizes (of randomly drawn seed- and pollen-donors) are both in excess of 440 individuals. The model thus cannot distinguish the observed data from panmictic mating.  相似文献   

18.
The abundance of butternut (Juglans cinerea L.) trees has severely declined rangewide over the past 50 years. An important factor in the decline is butternut canker, a disease caused by the fungus Ophiognomonia clavigigenti-juglandacearum, which has left the remaining butternuts isolated and sparsely distributed. To manage the remaining populations effectively, information regarding how butternut’s population genetic structure is affected by environmental and historical factors is needed. In this study, we assessed genetic structure and diversity of 161 butternut trees from 19 adjacent watersheds in the southern portion of butternut’s range using 12 microsatellite markers. We assessed the genetic diversity and genetic differentiation among trees grouped at various spatial scales. Our goal was to use historical abundance and land use data for these watersheds, which are now all a part of the Great Smoky Mountains National Park (GSMNP), to understand the ecological and evolutionary forces that challenge the conservation and management of butternut. In general, butternuts within the 19 neighboring watersheds were all part of one continuous population, with gene flow throughout. Significant genetic differentiation was detected between some groups of trees, but the differentiation was quite small and may not represent an ecologically significant distinction. The mean heterozygosity in all watersheds remained high, despite extensive mortality. Overall, genetic diversity and rare alleles were evenly distributed across all watersheds, with some variability in subpopulations containing butternut-Japanese walnut hybrids (Juglans x bixbyi or buarts). These results indicate that management of this species should focus on protection from future hybridization with Japanese walnut, promotion of regeneration, and persistence of all remaining butternut trees, which still retain high levels of genetic diversity.  相似文献   

19.
Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations.  相似文献   

20.
Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号