首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sensitivity to habitat fragmentation often has been examined in terms of thresholds in landscape composition at which a species is likely to occur. Observed thresholds often have been low or absent, however, leaving much unexplained about habitat selection beyond initial thresholds of occurrence, even for species with strong habitat preferences. We examined responses to varying amounts of tree cover, a widely influential measure of habitat loss, for 40 woodland bird species in a mixed woodland/grassland landscape in eastern North Dakota, USA. We used LOESS smoothing to describe incidence for each species at three scales: within 200, 400, and 1200 m around sample locations. For the 200‐m scale, we also calculated the most‐preferred range of tree cover (within which at least half of observations were predicted to occur) for each species. Only 10 of 40 species had occurrence thresholds greater than about 10% tree cover. After initial occurrence, species showed three general patterns: some increased monotonically with tree cover; some increased up to an asymptote; some peaked at intermediate amounts of tree cover and then declined. These patterns approximate selection for interior woodlands and for edge‐rich environments, but incidence plots provide greater detail in landscape‐scale selection than do those categories. For most species, patterns persisted at larger scales, but for some, larger scales had distinctly different patterns than local scales. Preferred ranges of tree cover varied from <20% tree cover (common grackle, Quiscalus quiscula) to >60% (veery, Catharus fuscescens). We conclude that incidence patterns provide more information on habitat selection than do threshold measures for most species: in particular, they differentiate species preferring concentrated woodlands from those preferring mixed landscapes, and they show contrasting degrees of selectiveness. [Correction added on 16 October 2012, after first online publication: the Abstract section has been reworded].  相似文献   

2.
The many documented examples of parallel and convergent evolution in similar environments are strong evidence for the role of natural selection in the evolution of trait variation. However, species may respond to selection in different ways; idiosyncrasies of their evolutionary history may affect how different species respond to the same selective pressure. To determine whether evolutionary history affects trait-environment associations in a recently diverged lineage, we investigated within-species trait-environment associations in the white proteas, a closely related monophyletic group. We first used manovas to determine the relative importance of shared response to selection, evolutionary history and unique responses to selection on trait variation. We found that on average, similar associations to the environment across species explained trait variation, but that the species had different mean trait values. We also detected species-specific associations of traits with the environmental gradients. To identify the traits associated uniquely with the environment, we used a structural equation model. Our analysis showed that the species differed in how their traits were associated with each of the environmental variables. Further, in the cases of two root traits (root mass and root length/mass ratio), two species differed in the direction of their associations (e.g. populations in one species had heavier roots in warmer areas, and populations in the other species had lighter roots in warmer areas). Our study shows that even in a closely related group of species, evolutionary history may have an effect on both the size and direction of adaptations to the environment.  相似文献   

3.
When a denatured polypeptide is put into refolding conditions, it undergoes conformational changes on a variety of times scales. We set out here to distinguish the fast events that promote productive folding from other processes that may be generic to any non-folding polypeptide. We have apply an ab initio folding algorithm to model the folding of various proteins and their compositionally identical, random-sequence analogues. In the earliest stages, proteins and their scrambled-sequence counterparts undergo indistinguishable reductions in the extent to which they explore conformation space. For both polypeptides, an early contraction occurs but does not involve the formation of a distinct intermediate. Following this phase, however, the naturally-occurring sequences are distinguished by an increase in the formation of three-body correlations wherein a hydrophobic group desolvates and protects an intra-molecular hydrogen bond. These correlations are manifested in a mild but measurable reduction of the accessible configuration space beyond that of the random-sequence peptides, and portend the folding to the native structure. Hence, early events reflect a generic response of the denatured ensemble to a change in solvent condition, but the wild-type sequence develops additional correlations as its structure evolves that can reveal the protein's foldability.  相似文献   

4.
Obligate mutualistic nursery pollination systems between insects and plants have led to substantial codiversification involving at least some parallel cladogenesis, as documented in Yucca, Ficus and Phyllanthaceae. In such systems, pollinators are generally species specific thus limiting hybridization and introgression among interfertile host species. Nevertheless, in the three systems, cases of one insect pollinating several plant species are reported. In most cases, host plants sharing pollinators are allopatric. However, in the case of the species group of Ficus auriculata, forms may co‐occur over large parts of their range. We show here that the species group of F. auriculata is constituted by four well‐defined genetic entities that share pollinators. We detected hybrids in nature mainly when both parental forms were growing nearby. Controlled crosses showed that F1 offspring could be successfully backcrossed. Hence, despite sharing pollinators and despite hybrid viability, the different forms have preserved their genetic and morphological identity. We propose that ecological differentiation among forms coupled with limited overlap of reproductive season has facilitated the maintenance of these interfertile forms. As such, establishment of pollinator host specificity may not be a prerequisite for sympatric diversification in Ficus.  相似文献   

5.
MALDI mass spectra were generated for the type strain of Arthrobacter crystallopoietes VKM Ac-1107T and for closely related (99.6?C100% 16S rRNA gene similarity) halotolerant Arthrobacter strains, as well as for some other Arthrobacter species. Results of the cluster analysis of the spectra were in agreement with the genotypic characteristics of bacteria (DNA-DNA hybridization and BOX-PCR). The data obtained in this study indicate that the halotolerant strains belong to two new Arthrobacter species. Specific peaks which can serve as chemotaxonomic markers of the species composing the phylogenetic group ??Arthrobacter crystallopoietes?? were revealed.  相似文献   

6.
Jacobs DS  Barclay RM  Walker MH 《Oecologia》2007,152(3):583-594
The peak echolocation frequency of insectivorous bats generally declines as body size increases. However, there are notable exceptions to this rule, with some species, such as Rhinolophus clivosus, having a higher than expected peak frequency for their body size. Such deviations from allometry may be associated with partitioning of foraging habitat (the foraging habitat hypothesis) or insect prey (the prey detection hypothesis). Alternatively, the deviations may be associated with the partitioning of sonar frequency bands to allow effective communication in a social context (the acoustic communication hypothesis). We tested the predictions of these hypotheses through comparisons at the family, clade and species level, using species of rhinolophids in general and R. clivosus, a species with a wide distribution, as a specific test case. We compared the wing parameters, echolocation frequency and ecology of R. clivosus to those of the sympatric R. capensis. Rhinolophus clivosus has a much higher echolocation frequency than predicted from its wing loading or body mass. Furthermore, contrary to the predictions of the foraging habitat hypothesis, we found no difference in foraging habitat between R. clivosus and R. capensis. The size range of insect prey taken by the two species also overlapped almost completely, contrary to the prey detection hypothesis. On the other hand, the variation of echolocation frequencies around the allometric relationship for rhinolophids was smaller than that for Myotis spp., supporting the prediction of the acoustic communication hypothesis. We thus propose that the relatively high peak frequency of R. clivosus is the result of partitioning of sonar frequency bands to minimize the ambiguity of echolocation calls during social interactions.  相似文献   

7.
《Aquatic Botany》2009,90(4):345-351
For two closely related amphibious plant taxa of the genus Oenanthe (Apiaceae) germination traits were examined. Habitats of the two taxa differ in hydroregime. The endemic Oenanthe conioides of the river Elbe estuary experiences daily tidal fluctuations whereas the widespread Oenanthe aquatica grows at the edge of ponds and in freshwater wetlands with rare and unpredictable fluctuations of water table.Seeds of both taxa could be characterized as non-dormant and light dependent. Under temperature fluctuations, germination percentage was higher than under constant temperatures. Salinity was tolerated to up to 3.3‰. At 10‰ there was a strong decrease in germination percentage, which did not result from ionic toxicity, as experiments with a gradient in osmolarity showed.Differences between the taxa were found concerning hydrological and temperature fluctuations. While O. aquatica showed no reduction in germination percentage under permanent 1 cm flooding, O. conioides did. On the other hand, germination under an artificial tidal hydroregime was better in O. conioides than in O. aquatica. During fluctuating temperatures of 3/22 and 6/22 °C O. conioides germinated much quicker and had a higher final germination percentage.Differences between the taxa could be correlated with differences of the hydrological regime in the specific habitat. Taking into account that O. conioides is phylogenetically a relatively young taxon, it may be hypothesized that a quick adaptation to the tidal conditions might have taken place.  相似文献   

8.
9.
Understanding the trophic relationships among closely related species is a way to obtain subsidies for their management and conservation of their habitats. The diets of three co-occurring abundant fish species of the Gerreidae family (Diapterus rhombeus, Eucinostomus argenteus and Eucinostomus gula) in a tropical bay were described. The tested hypothesis was that the three sympatric species present shifts in their use of resource during the ontogenetic development to facilitate their coexistence. Size groups for each species were categorized according to breakpoints in the morphological structures determined by piecewise regression models. Significant overlapping in diets was found for all size classes of D. rhombeus but not for size classes of the Eucinostomus genus. Furthermore, different size classes of D. rhombeus did not overlap diet with size classes of the Eucinostomus genus. The specialization in feeding niches corresponding to growth seems to bring benefits for this group of fish rather than a generalist feeding strategy. The hypothesis of the available resources partitioning was accepted only between the two genera (Diapterus and Eucinostomus), and among size classes of the Eucinostomus genus that seemed to follow the principle of limiting similarity. However, different size classes of D. rhombeus exhibited strong evidence of an intraspecific overlapping of the trophic niche. It seems that different processes related to use of the trophic niche dimension are structuring these closely related fish species.  相似文献   

10.
11.
Established empirical cases of sympatric speciation are scarce, although there is an increasing consensus that sympatric speciation might be more common than previously thought. Midas cichlid fish are one of the few substantiated cases of sympatric speciation, and they formed repeated radiations in crater lakes. In contrast, in the same environment, such radiation patterns have not been observed in other species of cichlids and other families of fish. We analyze morphological and genetic variation in a cichlid species (Archocentrus centrarchus) that co‐inhabits several crater lakes with the Midas species complex. In particular, we analyze variation in body and pharyngeal jaw shape (two ecologically important traits in sympatrically divergent Midas cichlids) and relate that to genetic variation in mitochondrial control region and microsatellites. Using these four datasets, we analyze variation between and within two Nicaraguan lakes: a crater lake where multiple Midas cichlids have been described and a lake where the source population lives. We do not observe any within‐lake clustering consistent across morphological traits and genetic markers, suggesting the absence of sympatric divergence in A. centrarchus. Genetic differentiation between lakes was low and morphological divergence absent. Such morphological similarity between lakes is found not only in average morphology, but also when analyzing covariation between traits and degree of morphospace occupation. A combined analysis of the mitochondrial control region in A. centrarchus and Midas cichlids suggests that a difference between lineages in the timing of crater lake colonization cannot be invoked as an explanation for the difference in their levels of diversification. In light of our results, A. centrarchus represents the ideal candidate to study the genomic differences between these two lineages that might explain why some lineages are more likely to speciate and diverge in sympatry than others.  相似文献   

12.
13.
For more than six decades, physiological ecologists have intensively studied diverse aspects of lizard thermal biology. Nevertheless, a recent review notes that prior studies have generally ignored gender differences in body temperatures, thermal sensitivity, or other aspects of thermal biology. We concur that gender differences have been ignored and should be examined: if gender differences prove common, standard protocols for studying lizard natural history, thermal physiology, and ecology will require significant modification. To help resolve this issue, we conducted a retrospective analysis of our huge data set on the thermal biology of many desert lizards (more than 11,000 individuals from 56 species in seven major clades) from Africa, Australia, and North America. Results are unambiguous: gender differences in body temperature, air temperature, and time of activity--and thus in field thermal biology--are almost always minor. In fact, mean body temperatures of males and females differ by less than 1 degrees C in 80.4% of species. For desert lizards, gender differences in thermal biology are the exception, not the rule. Nevertheless, gender differences should be examined when feasible because exceptions--though likely rare--could be biologically interesting.  相似文献   

14.
Previous research has demonstrated that the season in which soil is tilled (spring versus fall) can strongly influence weed community assembly and subsequent species composition and abundance in annual cropping systems. Despite this understanding, it is unknown whether finer‐scale, within‐season variation in the timing of tillage has similar impacts on weed community assembly. We conducted an experiment on four research farms across the northeastern USA to test the effects of tillage timing on weed emergence periodicity. Soil was tilled at 12 different times that were 2 weeks apart from 29 April to 30 September (the entire growing season) and the composition and abundance of the weed seedlings that emerged was measured 6 weeks later. Weed species clustered into three tillage timing groups at the two New York locations and clustered into five tillage timing groups at the New Hampshire and Maine locations. Individual species associated with each window of tillage time varied by location. No single trait or combination of traits were consistently associated with species‐by‐tillage time groupings across locations; however, within each location several traits were associated with particular groups of species, including: (a) seed length, (b) seed weight, (c) cotyledon type, (d) life span, (e) ploidy level and (f) photosynthetic pathway. These results suggest that fine‐scale variation in the timing of tillage can lead to predictable changes in the species composition and trait distribution of weed communities in annually tilled agroecosystems.  相似文献   

15.
Burkina Faso is a continental West African country of approximately 16 M people whose transfusion needs were covered by 66,210 blood units collected mostly in 4 regional transfusion centers part of a national network but also from hospital-based smaller blood centers. The first group of blood centers relies almost exclusively on volunteer, non-remunerated, blood donors and only approximately 32.7% of them are repeating donation. In contrast, hospital-based blood centers rely nearly exclusively on family/replacement donors. The general strategy of the national blood transfusion network was to base the system exclusively on volunteer donors, which was nearly accomplished overall and completely at Bobo-Dioulasso, the largest center. However, despite considerable increase in blood collection, the overall blood supply remains low (4.7 units/1000 inhabitants) and worsens during the secondary school recesses since young student blood constitutes the most part of volunteer donors. To overcome such shortages, mobile blood collection sessions are organized in alternate sites such as military barracks or places of worship but with limited success. Another critical issue is that despite considerable efforts and help from community advocates, only 32.7% of volunteers repeat donation limiting the considerably safety advantage of a pool of regular donors.  相似文献   

16.
17.
In eukaryotic phyla studied so far, the essential centromeric histone H3 variant (CENH3) is loaded to centromeric nucleosomes after S-phase (except for yeast) but before mitotic segregation (except for metazoan). While the C-terminal part of CENH3 seems to be sufficient for mitotic centromere function in plants, meiotic centromeres neither load nor tolerate impaired CENH3 molecules. However, details about CENH3 deposition in meiocytes are unknown (except for Drosophila). Therefore, we quantified fluorescence signals after the immunostaining of CENH3 along meiotic and mitotic nuclear division cycles of rye, a monocotyledonous plant. One peak of fluorescence intensity appeared in the early meiotic prophase of pollen mother cells and a second one during interkinesis, both followed by a decrease of CENH3. Then, the next loading occurred in the male gametophyte before its first mitotic division. These data indicate that CENH3 loading differs between mitotic and meiotic nuclei. Contrary to the situation in mitotic cycles, CENH3 deposition is biphasic during meiosis and apparently linked with a quality check, a removal of impaired CENH3 molecules, and a general loss of CENH3 after each loading phase. These steps ensure an endowment of centromeres with a sufficient amount of correct CENH3 molecules as a prerequisite for centromere maintenance during mitotic cycles of the microgametophyte and the progeny. From a comparison with data available for Drosophila, we hypothesise that the post-divisional mitotic CENH3 loading in metazoans is evolutionarily derived from the post-divisional meiotic loading phase, while the pre-divisional first meiotic loading has been conserved among eukaryotes.  相似文献   

18.
19.
Plant Ecology - Species–habitat associations can be used as a proxy for species niches. Previous research has shown that niche plasticity may increase diversity in plant communities, and that...  相似文献   

20.
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with Ppinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant–insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade‐offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant–insect coevolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号