首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary The pygidial (anal) gland was found to be the source of trail pheromone in the antTapinoma simrothi. Bioassays conducted with fractionated pygidial gland secretion indicated that the fraction containing iridodials and iridomyrmecin is responsible for the trail pheromone activity. Thus workers ofT. simrothi may utilize the same glandular exudate for alarm and trail following. At high emission rates from a point source, the ants responded in alarm, e.g., rushed to the source with open mandibles and raised abdomen. When concentrations were low and drawn as a line, the ants followed the secretion calmly. Trails ofT. simrothi are long-lived, having a biological half-life of 10 to 19 days. Quantitative studies of the evaporation rates of the iridodials by gas chromatography resulted in a half-life of 11 days, agreeing with the biological data. The implications of the use of the same glandular secretion for alarm and food recruitments are discussed.  相似文献   

2.
Alarm pheromones of social insects are best known for their role in the defence and maintenance of colony integrity. Previous studies with the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) demonstrate that the mandibular glands of workers (sterile females) and male and female sexuals produce an alarm pheromone, 2‐ethyl‐3,6‐dimethylpyrazine. The function of alarm pheromones in worker ants is well understood and divergent from the function of these compounds in the winged sexual forms. The present study quantifies the amount of pyrazine in the mandibular glands from male and female alate sexuals, as well as queens. Pyrazine production in female alates starts in the late pupal stage and increases until they reach mating flight‐ready maturity; however, after mating flight participation, the pyrazine level declines by >50%. Interestingly, mature male alates lose >85% of their mandibular gland pyrazine during mating flight activity. The results of the present study indicate that male and female sexuals use mandibular gland secretions for mating flight initiation and during mating flights. Furthermore, the ontogeny of mandibular gland products (pyrazine as the marker) from newly‐mated queens to mature colony queens shows a more than two‐fold increase in the amount of pyrazine by 6 months after mating. However, this is followed by a decline to trace amounts in mature colony queens (>2 years old), suggesting a function for mandibular gland products during colony development. Multifunctional use of social insect pheromones is well documented and data are reported in the present study suggesting new roles for mandibular gland products in fire ants.  相似文献   

3.
Rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine ( 3 ), 3‐(2‐methylbut‐1‐enyl)pyridine ( 4 ), and cicindeloine ( 5 ) in their pygidial glands to protect themselves from predation and microorganismic infestation. The biosynthesis of stenusine ( 3 ), 3‐(2‐methylbut‐1‐enyl)pyridine ( 4 ), and cicindeloine ( 5 ) was previously investigated in Stenus bimaculatus, Stenus similis, and Stenus solutus, respectively. The piperideine alkaloid cicindeloine ( 5 ) occurs also as a major compound in the pygidial gland secretion of Stenus cicindeloides. The three metabolites follow the same biosynthetic pathway, where the N‐heterocyclic ring is derived from L ‐lysine and the side chain from L ‐isoleucine. The different alkaloids are finally obtained by few modifications of shared precursor molecules, such as 2,3,4,5‐tetrahydro‐5‐(2‐methylbutylidene)pyridine ( 1 ). This piperideine alkaloid was synthesized and detected by GC/MS and GC at a chiral phase in the pygidial glands of Stenus similis, Stenus tarsalis, and Stenus cicindeloides.  相似文献   

4.
Gyrinid beetles are common in ponds and lakes in Sweden, where they aggregate in open areas of the surface. Gyrinid beetles have pygidial glands which produce compounds rendering them unpalatable to fish. This study examines whether the pygidial secretion can be used for alarm purposes in addition to other functions. Experiments showed that gyrinid beetles responded to water prepared with the pygidial compounds by evasive behaviour. The beetles did not respond when the compound was mediated by air. One component of the defense system of gyrinids is how they advertise their presence. The aggregation of dark beetles with their typical motion pattern when alerted is very conspicuous and easily identified by an experienced predator. We suggest that this aspect of gyrinid defence can be characterized as aposematic.  相似文献   

5.
Mosaics of exclusive foraging territories, produced by intra-and interspecific competition, are commonly reported from arboreal ant communities throughout the tropics and appear to represent a recurring feature of community organization. This paper documents an ant mosaic within mangrove forests of Panama and examines the behavioral mechanisms by which one of the common species, Azteca trigona, maintains its territories. Most of the mangrove canopy is occupied by mutually exclusive territories of the ants A. trigona, A. velox, A. instabilis, and Crematogaster brevispinosa. When foraging workers of A. trigona detect workers of these territorial species, they organize an alarm recruitment response using pheromonal and tactile displays. Nestmates are attracted over short distances by an alarm pheromone originating in the pygidial gland and over longer distances by a trail pheromone produced by the Pavan's gland. Recruits are simultaneously alerted by a tactile display. No evidence was found for chemical marking of the territory. Major workers are proportionally more abundant at territory borders than on foraging trails in the interior of the colony. The mechanisms of territory defense in A. trigona are remarkably similar to those of ecologically analogous ants in the Old World tropics.  相似文献   

6.
Volatile compounds produced by adults of Anchomenus dorsalis under undisturbed and disturbed conditions were investigated with an all-glass aeration apparatus. GC-MS analysis of the crude extracts from undisturbed and disturbed adults highlighted four major volatile compounds, undecane, heneicosane, Z-9 tricosene and tricosane, of which significantly more undecane was released by disturbed adults compared to undisturbed beetles. The pygidial glands of adults of Anchomenus dorsalis were investigated using light and Transmission Electron Microscopy (TEM). Each gland showed dense aggregates of secretory cells organized into visually distinct lobes; a long collecting canal that drains the secretion towards the reservoir, a bean-shaped double lobed muscular reservoir in which secretion is stored and a short duct (efferent duct) through which the secretion is discharged. The function of the pygidial glands and the possible role played by undecane as a defensive allomone and/or chemical signalling molecule are discussed.  相似文献   

7.
The exocrine glandular system of the nymphs and the adults of Dysdercus cingulatus were studied. The D. cingulatus nymphs present 3 dorso-abdominal glands (lying under the 3rd, 4th, and 5th abdominal terga) and a pair of dorso-lateral pygidial glands on the pygidium (tergum 8). Histological and ultrastructural studies show that the upper and lower walls of the dorso-abdominal glands differ in structure; 3 types of cells were described: epidermal cells, unicellular secretory cells, and multicellular secretory units. Each of these exocrine glands plays an important part in the behavior of the nymphs (gregariousness, alarm, defense). The morphology of the various glands is discussed, and the chemistry of their secretions and their biological functions are considered.  相似文献   

8.
The Neotropical species Odontomachus bauri employs canopy orientation during foraging and homing. An artificial canopy pattern above the ants is much more effective as an orientation cue than horizontal landmarks or chemical marks. However, both horizontal visual cues and chemical marks on the ground can serve in localizing the nest entrance. Successful O. bauri foragers recruit nestmates to leave the nest and search for food. However, the recruitment signals do not contain directional information. Antennation bouts and pheromones from the pygidial gland most likely serve as stimulating recruitment signals. Secretions from the mandibular and poison gland elicit alarm and attack behavior.  相似文献   

9.
Workers of Atta cephalotes deposit “nest exit pheromones” in the vicinity of their nest entrances. Lasting for a period of at least 24 h, these substances orient the workers to the nest openings and increase the rate of trail laying, leaf cutting, and leaf retrieval. Their perception by the workers forms part of a cognitive map by which the ants adjust the form and level of their activity during foraging.The structure and behavioural roles of the known abdominal exocrine glands have been evaluated. An arrestant is produced by the hind gut. The pygidial gland is vestigial, and a cylindrical epithelium on the 7th abdominal sternite might function as a sternal gland. Both the Dufour's gland and valves gland are well developed and produce alarm pheromones. The valves gland is not the source of a territorial pheromone, as reported by previous authors, and in fact we could find no evidence of the existence of a special substance of this nature from any source. However, colony-specific substances, possibly one or more of the nest-exit pheromones, are deposited around the nest openings. When workers encounter deposits by alien colonies at this site, they increase the rate of abdominal dipping, thus seemingly adding colony-specific chemicals of their own.  相似文献   

10.
Silk glands of the mulberry silkworm Bombyx mori are long and paired structures originating from the labial region and are anatomically and physiologically divided into three major compartments, the anterior, middle and posterior silk glands. The silk gland morphogenesis is complete by 8 days post egg laying. Extensive growth of silk glands during the larval stages is due to increase in tissue mass and not cell number. The cells in a completely formed silk gland pursue an endoreplicative cell cycle, and the genome undergoes multiple rounds of replication without mitosis or nuclear division. The expression patterns of cyclin B (mitotic cyclin) and cyclin E (G1 cyclin, essential for G1/S transition in both mitotic and endoreplicative cell cycles) in the course of silk gland development revealed that mitotic cell divisions take place only in the apex of the growing silk gland. However, the persistence of another mitotic focus in the middle silk gland even when the growing apex has moved well past this zone suggested the continued operation of mitosis for a while in this restricted region. The lack of cyclin B expression and abundance of cyclin E in the rest of the areas confirmed an alternation of the G1 and S phases of the cell cycle without an intervening mitotic phase. No expression of cyclin B was noticed anywhere in the silk glands after stage 25 of embryogenesis, indicating a complete switch over to the endomitotic mode of the cell cycle. The onset of expression of various genes encoding different silk proteins correlated with the onset of endomitotic events.Edited by D. Tautz  相似文献   

11.
We investigated the role of the pygidial gland on foraging behavior in two ecologically dominant column foraging Nearctic harvesting ants (Messor pergandei and Messor andrei). Using chemical analyses and behavioral tests, we show that n-tridecane is the major biologically active compound of pygidial gland secretions in both species, and that this chemical functions as a powerful alarm-recruitment pheromone. Another major compound of pygidial gland contents is benzaldehyde; this substance does not release behavioral reactions in M. pergandei workers but might function as a defensive secretion. Six solitary foraging Nearctic Messor and two column foraging Palearctic Messor species, did not have large pygidial gland reservoirs.  相似文献   

12.
The effective communication of alarm can be critical for social animals so that they are able to deal with threats posed by predators and competitors. In the case of many of the most ecologically dominant, large‐colony ant species, these alarm responses are aggressive and coordinated by alarm pheromones, produced generally from the mandibular glands. In the present study, the alarm behaviour of two Neotropical army ant species is examined, the swarm raiding Eciton burchellii (Westwood) and the column raiding Eciton hamatum (Fabricius). Both species exhibit aggressive alarm responses in response to crushed heads, suggesting that the alarm pheromone is indeed produced by the mandibular glands in these ants. The most abundant component of the mandibular gland secretion, 4‐methyl‐3‐heptanone (10 µL on a rubber septum), stimulates a substantial alarm response, although this is less than the response to a single crushed head. This suggests that 4‐methyl‐3‐heptanone may be an alarm‐stimulating compound in Eciton. The alarm response of E. burchellii involves more workers than that of E. hamatum, although major workers play a much greater role in the response of the latter species. The differences in the alarm response of the two closely‐related species may relate to their foraging strategies, with E. burchellii relying more on quantity rather than the caste of ants responding and possibly using alarm pheromones for offensive as well as defensive functions.  相似文献   

13.
Histological examination of serial sections through the abdomen of workers of three species of Myopias ants revealed the presence of several exocrine glands. These include the common venom and Dufour glands as well as the pygidial gland, but also more specific sternal glands and glands associated with the sting base and the gonostyli. Two of these glands have not been reported previously among ants: one is the paired oblong plate gland, that occurs next to the oblong plate and may have a pheromonal function. The other novel gland is the paired sting shaft gland, that occurs at the dorsal side in the proximal region of the sting shaft. A remarkable characteristic of these Myopias ants is that all glands of class-3 show ducts with gradually widening internal diameter. Myopias emeryi shows a clearly more simple variety of abdominal glands than Myopias maligna and M. sp.1.  相似文献   

14.
Formicine ants in distress spray alarm pheromone which typically recruits nestmates for help. Studying the western carpenter ant, Camponotus modoc Wheeler (Hymenoptera: Formicidae), our objectives were to (1) determine the exocrine glands that contain alarm recruitment pheromone, (2) identify the key alarm recruitment pheromone components, and (3) ascertain the pheromone components that are discharged by distressed ants. In Y-tube olfactometer experiments, extracts of poison glands, but not of Dufour’s glands, elicited anemotactic responses from worker ants. Gas chromatographic-mass spectrometric analyses of poison gland extracts revealed the presence of (1) aliphatic alkanes (undecane, tridecane, pentadecane, heptadecane), (2) aliphatic alkenes [(Z)-7-pentadecene, (Z)-7- and (Z)-8-heptadecene], (3) two acids (formic, benzoic), and (4) other oxygenated compounds (hexadecan-1-ol, hexadecyl formate, hexadecyl acetate). Testing the responses of worker ants in Y-tube olfactometers to complete and partial synthetic blends of these compounds revealed that the acids and the alkanes are essential alarm pheromone components. In two-choice arena bioassays, micro-locations treated with synthetic alarm pheromone recruited worker ants. Acids and alkanes were abundant in the poison gland and the Dufour’s gland, respectively, suggesting that the alarm pheromone components originate from both glands. Moreover, alarm pheromone sprays of ants differed in that all sprays contained formic acid but only some also contained alkanes, implying that ants can independently discharge the content of either one or both glands in accordance with the type of distress incident they experience.  相似文献   

15.
Several glandular sources of trail pheromones have been discovered in army ants in general. Nevertheless, at present the understanding of the highly coordinated behavior of these ants is far from complete. The importance of trail pheromone communication for the coordination of raids and emigrations in the ponerine army ant Leptogenys distinguenda was examined, and its ecological function is discussed. The secretions of at least two glands organize the swarming activities of L. distinguenda. The pygidial gland is the source of an orientation pheromone holding the group of raiding workers together. The same pheromone guides emigrations to new nest sites. In addition, the poison sac contains two further components: one with a weak orientation effect and another which produces strong, but short-term attraction and excitement. The latter component is important in prey recruitment and characterizes raid trails. This highly volatile recruitment pheromone allows the extreme swarm dynamic characteristic of this species. Emigration trails lack the poison gland secretion. Due to their different chemical compositions, the ants are thus able to distinguish between raid and emigration trails. Nest emigration is not induced chemically, but mechanically, by the jerking movements of stimulating workers.  相似文献   

16.
As a first example for the chemistry of oil gland secretions in the Hermannioidea (one of the three superfamilies of desmonomatan Oribatida), the oil gland secretion of Hermannia convexa was investigated by gas chromatography–mass spectrometry. Hexane extracts of all juvenile stages showed a multicomponent chromatographic pattern, mainly consisting of well-known oil gland secretion components such as neral, geranial, -acaridial and the unsaturated C17-hydrocarbons, 6,9-heptadecadiene and 8-heptadecene. The secretion profiles of juveniles varied slightly between samples of two different collections, namely in the presence of -acaridial and 8-heptadecene. Furthermore, a minor component, identified as 1,8-cineole (= eucalyptol) and hitherto not known from oil gland secretions of other species, was recorded in both juvenile and adult extracts. In adult profiles, 1,8-cineole, in low amounts, represented the only detectable component; thus, their profiles fundamentally differed from those of juveniles. A subsequent histological investigation revealed well developed oil glands in all juvenile stages, but degenerated oil glands in adults, consistent with the chemical data. So far, apart from H. convexa, degeneration of oil glands in the course of ontogenetic development is only known from a brachypylid species; on the other hand, chemical oil gland-polymorphism between juveniles and adults may occur in closely related Nothridae while it does not occur in oil glands of early- and middle-derivative Oribatida (Parhyposomata, Mixonomata, trhypochthoniid Desmonomata), nor in astigmatid mites.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

17.
Summary Alarm pheromones, chemical substances produced by social insects to alert the colony to threat, are the principal means by which colony defence is co-ordinated. We present the results of a study on alarm behaviour in 5 swarming species of wasps belonging to the genus Ropalidia. These species show a remarkably efficient strategy of alarm communication, including visual display and attack synchronization. We show that pheromones released from the venom gland play an important role in alarm recruitment in species belonging to the Ropalidia flavopicta group, but not in Ropalidia sumatrae. We analysed the contents of the venom reservoirs content of four of the studied species by gas chromatography-mass spectrometry. Glands were found to contain a complex mixture of volatile compounds as well as spiroacetals of higher molecular weight. Interestingly, despite all species producing similar chemical compounds from the venom gland, these were found to elicit alarm behaviour in only those species that build nest envelopes, suggesting a link between chemical release of alarm behaviour and the evolution of nest architecture in Ropalidia wasps.Received 19 August 2003; revised 29 February 2004; accepted 10 March 2004  相似文献   

18.
The ecological success of ants is founded on cooperative behaviour and a well functioning communication. Particularly invasive ants are able to act highly cooperatively, out-compete other species, and become ecologically dominant. Since ant communication is to a large extent chemical, we investigated the pheromone functions involved in foraging and alarm behaviour of the invasive tropical formicine Anoplolepis gracilipes. Our results suggest that long-lasting orientation cues are located in hindguts, while Dufour glands contain short-term attractants that trigger an effective recruitment. Poison gland effects were intermediate between hindgut and Dufour gland in terms of orientation, attraction and longevity. In contrast to the other pheromone sources, mandibular glands have a repellent effect and are most likely involved in alarm behaviour. Taken together, the pheromone glands of A. gracilipes contain functionally distinct signals with considerable differences in persistence. In this respect, its communication is exceptional in formicine ants. A strikingly similar communication system was previously detected in Paratrechina longicornis, another opportunistic and invasive formicine ant. Based on these similarities and the differences compared to non-invasive formicine ants, we discuss the role of chemical signals for the coordination of efficient foraging. We conclude that a sophisticated communication system can contribute significantly to ecological dominance and invasive success, in concert with other well known traits.  相似文献   

19.
Social Insect Pheromones: Their Chemistry and Function   总被引:1,自引:0,他引:1  
Exocrine secretions of social insects are often characterizedby extraordinarily complex mixtures of natural products. Thus,chemical communication in social insects must be interpretedin terms of signals generated by multicomponent systems, theindividual constituents of which can affect the informationalcontent of the message. Alarm pheromones have been identified chiefly in three subfamiliesof ants and their distribution appears to be chemosystematicallysignificant. Myrmicine genera emphasize 3-alkanones as alarmreleasers, whereas methyl ketones, primarily of terpenoidalorigin, are widely utilized as alarm pheromones in the subfamilyDolichoderinae. Formicine species may employ formic acidas analarm pheromone in addition to the compounds produced in themandibular and Dufour's glands. The mandibular gland pheromonesare chiefly acyclic monoterpene aldehydes (e.g., citronellal)which are relatively low boiling compounds. Higher boiling n-alkanesare produced in the Dufour's glands and may serve as more persistentreleasers of alarm behavior. Alarm pheromones as well as thecaste-specific pheromones of male bees and ants, probably alsoserve as defensive products. In many cases it is likely thatpheromones were originally utilized as defensive compounds andtheir communicative function is a secondary development.  相似文献   

20.
Summary Cytochemical methods have been used to study the distribution of acid phosphatase, esterase, ribonuclease, amylase and protease activity in the stimulated and unstimulated leaf glands of Pinguicula grandiflora, P. vulgaris, P. lusitanica, and P. caudata. Two gland types are present, stalked and sessile. The stalked glands bear a muco-polysaccharide secretion droplet, and are concerned with capture of the prey; the sessile glands are specialised for digestion. In unstimulated glands of both classes, acid phosphatase, esterase and ribonuclease activity is associated with the anticlinal walls of the head cells, which have a characteristic spongy inner surface, comparable with that of transfer cells. Acid phosphatase and esterase activity was also detected in the vacuoles of the head cells of the sessile glands. Substrate film tests showed that amylase is readily released from the stalked glands but not from the sessile ones, while in contrast proteolytic activity is mainly associated with the sessile glands.On stimulation by suitable nitrogenous materials, the glands begin to sectete fluid onto the leaf surface within 1 hr. During the process the enzymes held in the spongy walls are discharged, and activity is also lost from the intracellular sites in the sessile glands.Digestion on the leaf surface and resorption of the products has been followed autoradiographically after feeding of 14C-labelled protein. Within 2 hr, digestion products enter the leaf, and move towards the margin in the vascular system. Movement out of the leaf begins within 12 hr. Microautoradiographs showed a concentration of products around the bases of the sessile glands and in the cells of the gland head, showing that these glands are involved in resorption as well as secretion.A possible mechanism of gland function is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号