首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strategy was developed to determine the prime and non-prime substrate specificity of serine, threonine and cysteine proteases. ACC positional scanning technology was employed to determine the P4-P1 non-prime site substrate specificity. The data was used to synthesize biased donor-quencher positional scanning libraries to profile the P1'-P4' prime site substrate specificity. Directed sorting using the Irori Nanokan system allowed for the archiving of multiple P1'-P4' positional scanning libraries. From these libraries focused donor-quencher libraries incorporating P4-P1 data for each protease under study could be rapidly prepared. The profiling of thrombin and caspase-3 P4-P4' substrate specificity, comparison of the library specificity data to single substrates, and the analysis of physiological cleavage sites are described.  相似文献   

2.
The flavivirus NS2B-NS3(pro)teinase is an essential element in the proteolytic processing of the viral precursor polyprotein and therefore a potential drug target. Recently, crystal structures and substrate preferences of NS2B-NS3pro from Dengue and West Nile viruses (DV and WNV) were determined. We established that the presence of Gly-Gly at the P1'-P2' positions is optimal for cleavage by WNV NS3pro, whereas DV NS3pro tolerates well the presence of bulky residues at either P1' or P2'. Structure-based modeling suggests that Arg(76) and Pro(131)-Thr(132) limit the P1'-P2' subsites and restrict the cleavage preferences of the WNV enzyme. In turn, Leu(76) and Lys(131)-Pro(132) widen the specificity of DV NS3pro. Guided by these structural models, we expressed and purified mutant WNV NS2B-NS3pro and evaluated cleavage preferences by using positional scanning of the substrate peptides in which the P4-P1 and the P3'-P4' positions were fixed and the P1' and P2' positions were each randomized. We established that WNV R76L and P131K-T132P mutants acquired DV-like cleavage preferences, whereas T52V had no significant effect. Our work is the first instance of engineering a viral proteinase with switched cleavage preferences and should provide valuable data for the design of optimized substrates and substrate-based selective inhibitors of flaviviral proteinases.  相似文献   

3.
The prime side specificity of dengue protease substrates was investigated by use of proteochemometrics, a technology for drug target interaction analysis. A set of 48 internally quenched peptides were designed using statistical molecular design (SMD) and assayed with proteases of four subtypes of dengue virus (DEN-1-4) for Michaelis (K(m)) and cleavage rate constants (k(cat)). The data were subjected to proteochemometrics modeling, concomitantly modeling all peptides on all the four dengue proteases, which yielded highly predictive models for both activities. Detailed analysis of the models then showed that considerably differing physico-chemical properties of amino acids contribute independently to the K(m) and k(cat) activities. For k(cat), only P1' and P2' prime side residues were important, while for K(m) all four prime side residues, P1'-P4', were important. The models could be used to identify amino acids for each P' substrate position that are favorable for, respectively, high substrate affinity and cleavage rate.  相似文献   

4.
The serine protease, C1r, initiates activation of the classical pathway of complement, which is a crucial innate defense mechanism against pathogens and altered-self cells. C1r both autoactivates and subsequently cleaves and activates C1s. Because complement is implicated in many inflammatory diseases, an understanding of the interaction between C1r and its target substrates is required for the design of effective inhibitors of complement activation. Examination of the active site specificity of C1r using phage library technology revealed clear specificity for Gln at P2 and Ile at P1′, which are found in these positions in physiological substrates of C1r. Removal of one or both of the Gln at P2 and Ile at P1′ in the C1s substrate reduced the rate of C1r activation. Substituting a Gln residue into the P2 of the activation site of MASP-3, a protein with similar domain structure to C1s that is not normally cleaved by C1r, enabled efficient activation of this enzyme. Molecular dynamics simulations and structural modeling of the interaction of the C1s activation peptide with the active site of C1r revealed the molecular mechanisms that particularly underpin the specificity of the enzyme for the P2 Gln residue. The complement control protein domains of C1r also made important contributions to efficient activation of C1s by this enzyme, indicating that exosite interactions were also important. These data show that C1r specificity is well suited to its cleavage targets and that efficient cleavage of C1s is achieved through both active site and exosite contributions.  相似文献   

5.
The complement system is a central component of host defense but can also contribute to the inflammation seen in pathological conditions. The C1s protease of the first complement component, the C1 complex, initiates the pathway. In this study we have elucidated the full specificity of the enzyme for the first time using a randomized phage display library. It was found that, aside from the crucial P(1) position, the S(3) and S(2) subsites (in that order) played the greatest role in determining specificity. C1s prefers Leu or Val at P(3) and Gly or Ala residues at P(2). Apart from the S(2)' position, which showed specificity for Leu, prime subsites did not greatly affect specificity. It was evident, however, that together they significantly contributed to the efficiency of cleavage of a peptide. A peptide substrate based on the top sequence obtained in the phage display validated these results and produced the best kinetics of any C1s substrate to date. The results allow an understanding of the active site specificity of the C1s protease for the first time and provide a basis for the development of specific inhibitors aimed at controlling inflammation associated with complement activation in adverse pathological situations.  相似文献   

6.
A kinetic study was conducted on the acid proteases A-1 and A-2 from Scytalidium lignicolum using synthetic peptides as substrates. Almost maximum activity was attained with N-acylated tetrapeptides as the molecular size of substrates was increased. Suitable amino acid residues were required at the P1-P2 and P1'-P2' positions [notation of Schechter and Berger (14)]. Hydrophobic or bulky residues such as leucine were specifically required at the P1 and P1' positions, with the specificity at the latter position being considerably lower than that at the former. For catalysis, the presence of certain amino acid residues at the P2 and P2' positions was essential, mainly in relation to kcat. An inhibition study supported this view. Stringent stereospecificity was observed at the P2 and P2' positions, but the side chain specificity was low. Study of the B enzyme from the same organism was very difficult owing to its low activity against the peptides used. The Scytalidium acid proteases A-1, A-2, and B showed considerably different behavior against peptide substrates in comparison with usual acid proteases, which are senstive to pepstatin.  相似文献   

7.
The YOR163w open reading frame on chromosome XV of the Saccharomyces cerevisiae genome encodes a member of the MutT motif (nudix hydrolase) family of enzymes of Mr 21,443. By cloning and expressing this gene in Escherichia coli and S. cerevisiae, we have shown the product to be a (di)adenosine polyphosphate hydrolase with a previously undescribed substrate specificity. Diadenosine 5',5"'-P1, P6-hexaphosphate is the preferred substrate, and hydrolysis in H218O shows that ADP and adenosine 5'-tetraphosphate are produced by attack at Pbeta and AMP and adenosine 5'-pentaphosphate are produced by attack at Palpha with a Km of 56 microM and kcat of 0.4 s-1. Diadenosine 5',5"'-P1,P5-pentaphosphate, adenosine 5'-pentaphosphate, and adenosine 5'-tetraphosphate are also substrates, but not diadenosine 5',5"'-P1,P4-tetraphosphate or other dinucleotides, mononucleotides, nucleotide sugars, or nucleotide alcohols. The enzyme, which was shown to be expressed in log phase yeast cells by immunoblotting, displays optimal activity at pH 6.9, 50 degrees C, and 4-10 mM Mg2+ (or 200 microM Mn2+). It has an absolute requirement for a reducing agent, such as dithiothreitol (1 mM), and is inhibited by Ca2+ with an IC50 of 3.3 mM and F- (noncompetitively) with a Ki of 80 microM. Its function may be to eliminate potentially toxic dinucleoside polyphosphates during sporulation.  相似文献   

8.
Recombinant human napsin A expressed in human embryonic kidney 293 cells was purified to homogeneity by a single-step procedure using part of napsin A propeptide as affinity ligand. N-Terminal amino-acid sequencing of the purified enzyme identified the mature form of napsin A. Treatment of purified napsin A with endoglycosidases F and H resulted in a decrease in its molecular mass from 39 kDa to approximately 37 kDa, confirming that napsin A is glycosylated. The kinetic properties were analyzed by using two fluorogenic synthetic substrates K(Dabsyl)-TSLLMAAPQ-Lucifer yellow (DS1) and K(Dabsyl)-TSVLMAAPQ-Lucifer yellow (DS3). The Km values obtained were 1.7 microM and 6.2 microM, respectively. A substrate-specificity study using a napsin A-targeted peptide library confirmed the preference of napsin A for hydrophobic residues at positions P1 and P1'. Adjacent positions, P2-P4 and P2'-P4', appeared less restricted in distribution of amino acids. A pH optimum between 4.0 and 5.5 at room temperature was determined. The purified enzyme was fully active for more than 10 h at pH 5.0 and 6.0, while a half-life of 4 h was determined at pH 7.0 and 37 degrees C.  相似文献   

9.
Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.  相似文献   

10.
Regulated proteolysis by the two-component NS2B/NS3 protease of dengue virus is essential for virus replication and the maturation of infectious virions. The functional similarity between the NS2B/NS3 proteases from the four genetically and antigenically distinct serotypes was addressed by characterizing the differences in their substrate specificity using tetrapeptide and octapeptide libraries in a positional scanning format, each containing 130,321 substrates. The proteases from different serotypes were shown to be functionally homologous based on the similarity of their substrate cleavage preferences. A strong preference for basic amino acid residues (Arg/Lys) at the P1 positions was observed, whereas the preferences for the P2-4 sites were in the order of Arg > Thr > Gln/Asn/Lys for P2, Lys > Arg > Asn for P3, and Nle > Leu > Lys > Xaa for P4. The prime site substrate specificity was for small and polar amino acids in P1' and P3'. In contrast, the P2' and P4' substrate positions showed minimal activity. The influence of the P2 and P3 amino acids on ground state binding and the P4 position for transition state stabilization was identified through single substrate kinetics with optimal and suboptimal substrate sequences. The specificities observed for dengue NS2B/NS3 have features in common with the physiological cleavage sites in the dengue polyprotein; however, all sites reveal previously unrecognized suboptimal sequences.  相似文献   

11.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

12.
This review summarizes our knowledge of analogs and derivatives of diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), the most extensively studied member of the dinucleoside 5',5"'-P1,Pn-polyphosphate (NpnN) family. After a short discussion of enzymes that may be responsible for the accumulation and degradation of Np4)N's in the cell, this review focuses on chemically and/or enzymatically produced analogs and their practical applications. Particular attention is paid to compounds that have aided the study of enzymes involved in the metabolism of Ap4A (Np4N'). Certain Ap4A analogs were alternative substrates of Ap4A-degrading enzymes and/or acted as enzyme inhibitors, some other helped to establish enzyme mechanisms, increased the sensitivity of certain enzyme assays or produced stable enzyme:ligand complexes for structural analysis.  相似文献   

13.
Two enzymatic activities that split diadenosine triphosphate have been reported in Escherichia coli: a specific Mg-dependent bis(5'-adenosyl) triphosphatase (EC 3.6.1.29) and the bis(5'-adenosyl) tetraphosphatase (EC 3.6.1.41). In addition to the activities of these two enzymes, a different enzyme activity that hydrolyzes dinucleoside polyphosphates is described. After purification and study of its molecular and kinetic properties, we concluded that it corresponded to the 5'-nucleotidase (EC 3.1.3.5) that has been described in E. coli. The enzyme was purified from sonic extracts and osmotic shock fluid. From sonic extracts, two isoforms were isolated by chromatography on ion-exchange Mono Q columns; they had a molecular mass of about 100 kilodaltons (kDa). From the osmotic shock fluid, a unique form of 52 kDa was recovered. Mild heating transformed the 100-kDa isoform to a 52-kDa form, with an increase in activity of about threefold. The existence of a 5'-nucleotidase inhibitor described previously, which associates with the enzyme and is not liberated in the osmotic shock fluid, may have been responsible for these results. The kinetic properties and substrate specificities of both forms (52 and 100 kDa) were almost identical. The enzyme, which is known to hydrolyze AMP and uridine-(5')-diphospho-(1)-alpha-D-glucose, but not adenosine-(5')-diphospho-(1)-alpha-D-glucose, was also able to split adenosine-(5')-diphospho-(5)-beta-D-ribose, ribose-5-phosphate, and dinucleoside polyphosphates [diadenosine 5',5'-P1,P2-diphosphate,diadenosine 5',5'-P1,P3-triphosphate, diadenosine 5',5'-P1,P4-tetraphosphate, and bis(5'-guanosyl) triphosphate]. The effects of divalent cations and pH on the rate of the reaction with different substrates were studied.  相似文献   

14.
Factor Xa is a central protease in the coagulation cascade and the target for many anticoagulant compounds currently under development. The preferences of the enzyme for substrates incorporating residues N-terminal to the cleavage site (P1, P2, etc.) have been elucidated, but little is known of its preferences for residues C-terminal to the cleavage site (P1', P2', etc.). The preferences of bovine factor Xa for substrate residues in the P1', P2' and P3' positions were mapped using fluorescence-quenched substrates. Bovine factor Xa, often used as a model for factor Xa, was most selective for the P2' position, less selective at the P1' position and almost completely non-selective at the P3' position. It appears that while the prime side subsites of factor Xa impose some selectivity towards substrates, the influence of these sites on factor Xa cleavage specificity is relatively low in comparison to related enzymes such as thrombin.  相似文献   

15.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

16.
Mason DE  Ek J  Peters EC  Harris JL 《Biochemistry》2004,43(21):6535-6544
Deconjugation of ubiquitin from cellular proteins is catalyzed by the deubiquitin hydrolase (DUB) family of enzymes and is an important component of the ubiquitin regulatory system affecting cellular function beyond simple maintenance of monomeric pools of ubiquitin. Specific deconjugation of ubiquitinated substrates has been described, but substrate recognition is poorly understood. To determine whether specificity may be conferred by recognition of a primary cognate sequence, the substrate preferences of two DUBs, UCH-L3 and isopeptidase T (IsoT), were profiled using a positional scanning branched peptide library. The sequence of the library was based on K48-branched diubiquitin, RLXXXXK(GGRLRLVL)QLEDGR, where X denotes a diversified position in the library (P1' '-P4' ' numbered from K48). Hydrolysis of the branched peptide was indicative of DUB activity and was detected and quantified by mass spectrometry. IsoT was active toward the library but demonstrated little preference for the diversified positions. In contrast, UCH-L3 exhibited minor amino acid preferences at P2' ' and P4' ' and a 10-fold preference for the basic residues Arg and Lys at P3' '. Kinetic analysis of substrates with optimized and suboptimized sequences (as defined by the library profile) confirmed the preference at P3' '. Substrate inhibition of UCH-L3 but not IsoT was noted for the optimized sequence at concentrations greater than 5 microM and with an IC(50) of 12.2 microM; the inhibition was determined to be competition with Ub-AMC (ubiquitin C-terminal 7-amido-4-methylcoumarin).  相似文献   

17.
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.  相似文献   

18.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   

19.
Matrix metalloproteinase (MMP) family members are involved in the physiological remodeling of tissues and embryonic development as well as pathological destruction of extracellular matrix components. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric, fluorogenic triple-helical peptide (THP) models of the MMP-1 cleavage site in type II collagen. The substrates were designed to incorporate the fluorophore/quencher pair of (7-methoxycoumarin-4-yl)acetyl (Mca) and N-2,4-dinitrophenyl (Dnp) in the P(5) and P(5)' positions, respectively. In addition, Arg was incorporated in the P(2)' and P(8)' positions to enhance enzyme activity and improve substrate solubility. The desired sequences were Gly-Pro-Lys(Mca)-Gly-Pro-Gln-Gly approximately Leu-Arg-Gly-Gln-Lys(Dnp)-Gly-Ile/Val-Arg. Two fluorogenic substrates were prepared, one using a covalent branching protocol (fTHP-1) and one using a peptide self-assembly approach (fTHP-3). An analogous single-stranded substrate (fSSP-3) was also synthesized. Both THPs were hydrolyzed by MMP-1 at the Gly approximately Leu bond, analogous to the bond cleaved in the native collagen. The individual kinetic parameters for MMP-1 hydrolysis of fTHP-3 were k(cat) = 0.080 s(-1) and K(M) = 61.2 microM. Subsequent investigations showed fTHP-3 hydrolysis by MMP-2, MMP-3, MMP-13, a C-terminal domain-deleted MMP-1 [MMP-1(Delta(243-450))], and a C-terminal domain-deleted MMP-3 [MMP-3(Delta(248-460))]. The order of k(cat)/K(M) values was MMP-13 > MMP-1 approximately MMP-1(Delta(243-450)) approximately MMP-2 > MMP-3 approximately MMP-3(Delta(248-460)). Studies on the effect of temperature on fTHP-3 and fSSP-3 hydrolysis by MMP-1 showed that the activation energies between these two substrates differed by 3.4-fold, similar to the difference in activation energies for MMP-1 hydrolysis of type I collagen and gelatin. This indicates that fluorogenic triple-helical substrates mimic the behavior of the native collagen substrate and may be useful for the investigation of collagenase triple-helical activity.  相似文献   

20.
Infection by Hepatitis C Virus (HCV) leads to a slowly progressing disease that over two decades can lead to liver cirrhosis or liver cancer. Currently, one of the most promising approaches to anti-HCV therapy is the development of inhibitors of the NS3/4A protease, which is essential for maturation of the viral polyprotein. Several substrate-derived inhibitors of NS3/4A have been described, all taking advantage of binding to the S subsite of the enzyme. Inspection of the S' subsite of NS3/4A shows binding pockets which might be exploited for inhibitor binding, but due to the fact that ground-state binding to the S' subsite is not used by the substrate, this does not represent a suitable starting point. We have now optimized S'-binding in the context of noncleavable decapeptides spanning P6-P4'. Binding was sequentially increased by introduction of the previously optimized P-region [Ingallinella et al. (1998) Biochemistry 37, 8906-8914], change of the P4' residue, and combinatorial optimization of positions P2'-P3'. The overall process led to an increase in binding of more than 3 orders of magnitude, with the best decapeptide showing IC(50) < 200 pM. The binding mode of the decapeptides described in the present work shares features with the binding mode of the natural substrates, together with novel interactions within the S' subsite. Therefore, these peptides may represent an entry point for a novel class of NS3 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号