首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent developments in the apoptosis field have uncovered a family of cysteine proteases, the Caspases, that act as signalling components as well as effectors of the cell death machinery. Caspases are constitutively present as inactive precursors within most cells and undergo proteolytic processing in response to diverse death-inducing stimuli to initiate the death programme. Active caspases can process other caspases of the same type as well as process caspases further downstream in the pathway that ultimately leads to collapse of the cell. This cellular collapse is thought to occur as a consequence of caspase-mediated cleavage of a diverse array of cellular substrates. Regulation of entry into the death programme is controlled at a number of levels by members of the Bcl-2 family, as well as by other cell death regulatory proteins. Recent data has shed light upon the mechanism of action of these regulatory molecules and suggests that the point of caspase activation is a major checkpoint in the cell death programme. Because many transformed cell populations possess derangements in cell death-regulatory genes, such as bcl-2, such cells frequently exhibit elevated resistance to cytotoxic chemotherapy. Thus, a deeper understanding of how apoptosis is normally regulated has therapeutic implications for disease states where the normal controls on the cell death machinery have been subverted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Intracellular cysteine aspartate-specific proteases (caspases) play both signaling and effector roles in realizing the program of cell death. Caspases function as proteolytic cascades unique for each cell type and signal triggering apoptosis. All parts of the proteolytic cascades are duplicated and controlled by feedback signals. Amplification cycles between pairs of caspases (the third and the sixth, the ninth and the third, the twelfth and the sixth, and others) help multiply the initial apoptotic signal. The presence of physiological inhibitors of apoptosis that directly interact with caspases creates a multilevel regulatory network of apoptosis in cell. The caspase proteolytic cascades are also regulated by sphingolipid secondary messengers, among them ceramide, sphingosine, and their phosphates. Moreover, an association of the caspase signaling with ubiquitin-dependent proteolysis is shown in cells. In particular, the use of extracellular activators and inhibitors of caspases allows irreversible activation of apoptosis in tumor cells or the prevention of neuron death in neurodegenerative diseases.  相似文献   

3.
4.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:10,自引:0,他引:10  
Apoptosis is primarily executed by active caspases, which are derived from the inactive procaspase zymogens through proteolytic cleavage. We determined the crystal structures of a caspase zymogen, procaspase-7, and an active caspase-7 without any bound inhibitors. Compared to the inhibitor-bound caspase-7, procaspase-7 zymogen exhibits significant structural differences surrounding the catalytic cleft, which precludes the formation of a productive conformation. Proteolytic cleavage in between the large and small subunits allows rearrangement of essential loops in the active site, priming active caspase-7 for inhibitor/substrate binding. Strikingly, binding by inhibitors causes a 180-degree-flipping of the N-terminus in the small subunit, which interacts with and stabilizes the catalytic cleft. These analyses reveal the structural mechanisms of caspase activation and demonstrate that the inhibitor/substrate binding is a process of  相似文献   

5.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:8,自引:0,他引:8  
Shi Y 《Molecular cell》2002,9(3):459-470
Caspases are central components of the machinery responsible for apoptosis. Recent structural and biochemical studies on procaspases, IAPs, Smac/DIABLO, and apoptosome have revealed a conserved mechanism of caspase activation and inhibition. This article reviews these latest advances and presents our current understanding of caspase regulation during apoptosis.  相似文献   

6.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:16,自引:0,他引:16  
YIGONGSHI 《Cell research》2002,12(3):277-277
  相似文献   

7.
Serial killers: ordering caspase activation events in apoptosis   总被引:13,自引:0,他引:13  
Caspases participate in the molecular control of apoptosis in several guises; as triggers of the death machinery, as regulatory elements within it, and ultimately as a subset of the effector elements of the machinery itself. The mammalian caspase family is steadily growing and currently contains 14 members. At present, it is unclear whether all of these proteases participate in apoptosis. Thus, current research in this area is focused upon establishing the repertoire and order of caspase activation events that occur during the signalling and demolition phases of cell death. Evidence is accumulating to suggest that proximal caspase activation events are typically initiated by molecules that promote caspase aggregation. As expected, distal caspase activation events are likely to be controlled by caspases activated earlier in the cascade. However, recent data has cast doubt upon the functional demarcation of caspases into signalling (upstream) and effector (downstream) roles based upon their prodomain lengths. In particular, caspase-3 may perform an important role in propagating the caspase cascade, in addition to its role as an effector caspase within the death programme. Here, we discuss the apoptosis-associated caspase cascade and the hierarchy of caspase activation events within it.  相似文献   

8.
Cytochrome c is thought to play an important role in the initiation of apoptosis following its release from mitochondria. It is controversial whether such release is also involved in caspase activation and apoptotic cell death after ligation of the cell surface molecule Fas. We addressed this issue by investigating cells from the human cell lines Jurkat and SKW6 which had been treated with the inhibitor of the mitochondrial F0/F1-ATPase, oligomycin. Oligomycin-treatment led, over a wide range of concentrations, to ATP-depletion and, at similar concentrations, abrogated the appearance of caspase-3-like activity caused by stauroporine. Electroporation of cytochrome c protein into intact cells induced caspase activation in both cell lines and significant nuclear apoptosis in Jurkat cells. In ATP-depleted cells, electroporation of cytochrome c induced neither caspase activation nor nuclear fragmentation. Fas-induced caspase activation and nuclear apoptosis, however, were unaffected by the depletion of ATP. Thus, cytochrome c is unlikely to be an important factor in Fas-induced cell death.  相似文献   

9.
Abstract

Apoptosis is an important phenomenon for investigating the efficacy of anti-cancer drug candidates. The conventional assays for cellular apoptosis, such as enzyme-linked immunosorbent assay, absorbance monitoring for the activity of caspase, and flow cytometric assay, have focused only on biochemical events. We investigated the staurosporine (STS)-induced apoptosis of the murine macrophage RAW-264.7 cell using a cell based bioimaging technique. Using time-lapse confocal microscopy, we monitored caspase-3 activation during apoptosis by imaging the translocation of green fluorescent protein from the cytosol to the nuclei. Five hours after 1 μM STS treatment, caspase-3 was observed to be activated and membrane blebbing was observed simultaneously. Also, the loss of phosphatidylserine (PS) asymmetry in the phospholipid bilayer of plasma membrane during early apoptosis was monitored by imaging annexin-V labeled with fluorescein isocyanate binding to the externalized PS at various concentrations of STS. Moreover, disintegration of the plasma membrane during late apoptosis was confirmed using a nuclear dye, propidium iodide. The single cell based bioimaging data agreed well with those of the biochemical assays for caspase activation and morphological observation for membrane integrity.  相似文献   

10.
11.
We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVADfmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.  相似文献   

12.
The role of zinc in caspase activation and apoptotic cell death   总被引:15,自引:0,他引:15  
In addition to its diverse role in many physiological systems, zinc (Zn) has now been shown to be an important regulator of apoptosis. The purpose of this review is to integrate previously published knowledge on Zn and apoptosis with current attempts to elucidate the mechanisms of action of this biometal. This paper begins with an introduction to apoptosis and then briefly reviews the evidence relating Zn to apoptosis. The major focus of this review is the mechanistic actions of Zn and its candidate intracellular targets. In particular, we examine the cytoprotective functions of Zn which suppress major pathways leading to apoptosis, as well as the more direct influence of Zn on the apoptotic regulators, especially the caspase family of enzymes. These two mechanisms are closely related since a decline in intracellular Zn below a critical threshold level may not only trigger pathways leading to caspase activation but may also facilitate the process by which the caspases are activated. Studies by our laboratory in airway epithelial cells show that Zn is co-localized with the precursor form of caspase-3, mitochondria and microtubules, suggesting this Zn is critically placed to control apoptosis. Further understanding the different pools of Zn and how they interact with apoptotic pathways should have importance in human disease.  相似文献   

13.
We have previously shown that cAMP protects against bile acid-induced apoptosis in cultured rat hepatocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. In the present studies, we investigated the mechanisms involved in this anti-apoptotic effect. Hepatocyte apoptosis induced by glycodeoxycholate (GCDC) was associated with mitochondrial depolarization, activation of caspases, the release of cytochrome c from the mitochondria, and translocation of BAX from the cytosol to the mitochondria. cAMP inhibited GCDC-induced apoptosis, caspase 3 and caspase 9 activation, and cytochrome c release in a PI3K-dependent manner. cAMP activated PI3K in p85 immunoprecipitates and resulted in PI3K-dependent activation of the survival kinase Akt. Chemical inhibition of Akt phosphorylation with SB-203580 partially blocked the protective effect of cAMP. cAMP resulted in wortmannin-independent phosphorylation of BAD and was associated with translocation of BAD from the mitochondria to the cytosol. These results suggest that GCDC-induced apoptosis in cultured rat hepatocytes proceeds through a caspase-dependent intracellular stress pathway and that the survival effect of cAMP is mediated in part by PI3K-dependent Akt activation at the level of the mitochondria.  相似文献   

14.
We previously reported that p42/SETbeta is a substrate for caspase-7 in irradiated MOLT-4 cells, and that treating the cells with sodium orthovanadate (vanadate) inhibits p42/SETbeta's caspase-mediated cleavage. Here, we initially found that the inhibitory effect of vanadate was due to the suppression of caspase activation but not of caspase activity. Further investigations revealed that vanadate suppressed upstream of apoptotic events, such as the loss of mitochondrial membrane potential, the conformational change of Bax, and p53 transactivation, although the accumulation, total phosphorylation, and phosphorylation of six individual sites of p53 were not affected. Importantly, vanadate suppressed p53-dependent apoptosis, but not p53-independent apoptosis. Finally, gel-shift and chromatin immunoprecipitation assays conclusively demonstrated that vanadate inhibits the DNA-binding activity of p53. Vanadate is conventionally used as an inhibitor of protein tyrosine phosphatases (PTPs); however, we recommend that the influence of vanadate not only on PTPs but also on p53 be considered before using it.  相似文献   

15.
The p53 tumor suppressor gene is critically involved in cell cycle regulation, DNA repair, and programmed cell death. Several lines of evidence suggest that p53 death signals lead to caspase activation; however, the mechanism of caspase activation by p53 still is unclear. Expressing wild type p53 by means of an adenoviral expression vector, we were able to induce apoptotic cell death, as characterized by morphological changes, phosphatidylserine externalization, and internucleosomal DNA fragmentation, in p53(null) Saos-2 cells. This cell death was accompanied by caspase activation as well as by cleavage of caspase substrates and was preceded by mitochondrial cytochrome c release. The addition of the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) directly after transduction almost completely prevented p53-induced apoptotic cell death but did not inhibit mitochondrial cytochrome c release. In contrast, N-acetylcysteine, even at high concentrations, could not prevent induction of programmed cell death by p53 expression. Cytosolic extracts from Saos-2 cells transduced with p53, but not from Saos-2 cells transduced with the empty adenoviral vector, contained a cytochrome c-releasing activity in vitro, which was still active in the presence of zVAD-fmk. When Bax was immunodepleted from the cytosolic extracts of p53-expressing cells before incubation with isolated mitochondria, the in vitro cytochrome c release was abolished. Thus, we could demonstrate in cells and in vitro that p53 activates the apoptotic machinery through induction of the release of cytochrome c from the mitochondrial intermembrane space. Furthermore, we provide in vitro evidence for the requirement of cytosolic Bax for this cytochrome c-releasing activity of p53 in Saos-2 cells.  相似文献   

16.
Primary glioblastomas (GBMs) commonly overexpress the oncogene epidermal growth factor receptor (EGFR), which leads to increased Ras activity. FTA, a novel Ras inhibitor, produced both time- and dose-dependent caspase-mediated apoptosis in GBM cell lines. EGFR-mediated increase in 3H-thymidine uptake was inhibited by FTA. FACS analysis was performed to determine the percent of apoptotic cells. The sub-Go population of GBM cells was increased from 4.5 to 13.8% (control) to over 45-53.6% in FTA-treated cells within 24 h. Furthermore, FTA also increased the activities of both caspase-3 and -9, and PARP cleavage. Treatment of GBMs with FTA before or after EGF addition to the cultures blocked phosphorylation of Akt and mitogen-activated protein kinases (MAPK). FTA also significantly reduced the amount of EGF-induced Ras-GTP as reflected by a decrease in the level of Ras bound to Raf-RBD-GST. This study demonstrates that inhibition of Ras methylation may provide a therapeutic target for the treatment of GBMs overexpressing EGFR.  相似文献   

17.
18.
Apoptosis has been implicated in the pathogenesis of many diseases including various forms of liver failure. The apoptotic process is essentially regulated by intracellular proteases, called caspases, which cleave several vital proteins. Despite the rapid elucidation of apoptotic signaling cascades, however, almost no information exists about the activation of caspases in situ. In the present study, a monoclonal antibody was employed which selectively recognized cleavage site-specific fragments of the caspase substrate cytokeratin-18. We demonstrate that this antibody labeled apoptotic hepatocytes in culture and, in addition, could be used to monitor caspase activation in formalin-fixed tissue biopsies. In liver sections of different liver diseases an increased number of early apoptotic cells was detected which were not found in normal tissue. Our data reveal that hepatobiliary diseases are characterized by elevated caspase activation and apoptosis, which can be specifically detected in situ by a cleavage site-specific antibody against cytokeratin-18.  相似文献   

19.
Huh JE  Kang KS  Ahn KS  Kim DH  Saiki I  Kim SH 《Life sciences》2003,73(17):2249-2262
Mylabris phalerata (MP) is an insect that has been used for the treatment of cancer in oriental medicine. In the present study, the butanol (BuOH) fraction of MP (BFMP) was examined to determine whether it can exert anti-cancer activity through an apoptotic pathway with little toxicity. BFMP was found to have a specific cytotoxic effect on human monocytic leukemic U937 cells (IC(50) = 140 microg/ml) rather than on peripheral blood mononuclear lymphocytes (PBML, IC(50) = over 500 microg/ml). BFMP also induced the morphological changes of apoptosis, such as chromatin condensation, cell shrinking and DNA fragmentation at a concentration of 31.25 microg/ml. In addition, BFMP significantly increased the portion of apoptotic annexin-V positive cells in a dose-dependent manner, and effectively activated caspases (cysteine aspartase) cascade involving caspases 8, 9 and 3. BFMP also effectively cleaved Bid, a death agonist member of the Bcl-2 family and (poly(ADP-ribose)polymerase) (PARP) and induced the subsequent release of cytochrome c from mitochondria into the cytosol. However, it did not affect Bcl-2 and Bax expression. Taken together, these data suggest that the BuOH extract of Mylabris phalerata can induce apoptosis in U937 cells by caspase cascade activation in conjunction with cytochrome c release, induced by a product of Bid. Therefore, we conclude that BFMP has anti-cancer activity, which is achieved through apoptosis and is associated with little toxicity.  相似文献   

20.
Apoptosis is an important physiological process crucially involved in development and homeostasis of multicellular organisms. Although the major signaling pathways have been unraveled, a detailed mechanistic understanding of the complex underlying network remains elusive. We have translated here the current knowledge of the molecular mechanisms of the death-receptor-activated caspase cascade into a mathematical model. A reduction down to the apoptotic core machinery enables the application of analytical mathematical methods to evaluate the system behavior within a wide range of parameters. Using parameter values from the literature, the model reveals an unstable status of survival indicating the need for further control. Based on recent publications we tested one additional regulatory mechanism at the level of initiator caspase activation and demonstrated that the resulting system displays desired characteristics such as bistability. In addition, the results from our model studies allowed us to reconcile the fast kinetics of caspase 3 activation observed at the single cell level with the much slower kinetics found at the level of a cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号