首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esterases are involved in the susceptibility or resistance of organisms to organophosphate pesticides. We have examined the action of parathion on the marine dinoflagellates Crypthecodinium cohnii and Prorocentrum micans by looking at their esterases. One-dimensional gel electrophoresis, immunoblotting and cytochemistry plus image analysis were used to characterize the nature and distribution of the enzymes. Esterases were found in both species, but there appeared to be no particular intracellular localization. The esterase activity of the heterotrophic species Crypthecodinium cohnii was 30-fold greater than that of the autotrophic Prorocentrum micans and had an antigenic site in common with mosquito esterase. The resistance of Crypthecodinium cohnii to parathion was specific and reversible. Less parathion entered the parathion-resistant Crypthecodinium cohnii cells than the untreated control cells. Parathion-resistant cell extracts of Crypthecodinium cohnii analyzed after immunoblotting also contained an additional band of esterase activity. These results confirm the importance of esterases in toxicological studies of organophosphate insecticides, especially those of marine dinoflagellates.  相似文献   

2.
1. The distribution of labeled and unlabeled adenine-nucleotides inside and outside mitochondria was followed after addition of [14C]ADP to rat liver mitochondria. Two types of mitochondria were used: 1, respiring mitochondria which were carrying out oxidative phosphorylation and which had been replenished in ATP by incubation in a medium supplemented with succinate and phosphate; 2, non-respiring mitochondria which had been partially depleted of ATP by incubation in a medium supplemented with rotenone and phosphate. During the first minute following addition of [14C]ADP to the respiring mitochondria, the pre-existing intramitochondrial (internal) [12C]ATP was released into the medium and replaced by newly synthesized [14C]ATP. No [14C]ADP accumulated in the mitochondria. It is suggested that extramitochondrial (external) ADP entering respiring mitochondria in exchange for internal ATP is phosphorylated to ATP before its complete release in the matrix space. In non-respiring mitochondria, the entry of [14C]ADP into the mitochondria was accompanied by the appearance in the external space of [12C]ADP and [12C]ATP, with a marked predominance of [12C]ADP. Thus in non-respiring mitochondria, the residual internal ATP is dephosphorylated to ADP in the inner membrane before being released outside the mitochondria. 2. When mitochondria were incubated with glutamate, ADP and [32P]phosphate, the [32P]ATP which accumulated in the matrix space became rapidly labeled in both the P gamma and P beta groups of the ATP, due to the presence of a transphosphorylation system in the mitochondrial matrix. The [32P]ATP which accumulated outside the mitochondria was also labeled in the P beta group, although less rapidly than the internal ATP. Our data show that a large fraction (75-80%) of the ATP produced by phosphorylation of added ADP within the inner mitochondrial membrane is released into the matrix space before being transported out from the mitochondria; only a small part (20-25%) is released directly outside the mitochondria without penetrating the matrix space. 3. In respiring and phosphorylating mitochondria, the value of the Km of the ADP-carrier for external ADP was 2-4 times lower than its value in non-respiring and non-phosphorylating mitochondria. 4. The above experimental data are discussed with reference to the topological and functional relationships between the ADP-carrier and the oxidative phosphorylation complex in the inner mitochondrial membrane. They strongly suggest that the ADP-carrier comes to the close neighbourhood of the ATP synthetase on the matrix side of the inner membrane.  相似文献   

3.
Growth of cultures of the dinoflagellate Prorocentrum micans Ehrbg. was slowed by parathion greater than 1 ppm. Parathion also decreased chlorophyll content and perturbed cellular ultrastructure, eliciting especially plastoglobuli in their chloroplasts. Toxicity of this organophosphorous insecticide is unlikely to be due to its anticholinesterase activity since P. micans appears not to contain cholinesterase. Fluorescence kinetics show that parathion affects the photosynthetic system, particularly photosystem II.  相似文献   

4.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

5.
Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport.  相似文献   

6.
The presence of myosin in dinoflagellates was tested using an anti-Acanthamoeba castellanii myosin II polyclonal antibody on the heterotrophic dinoflagellate Crypthecodinium cohnii Seligo. Western blots revealed the presence of a unique band of 80 kDa in total protein extracts and after immunoprecipitation. Expression of this 80 kDa protein appeared constant during the different phases of the cell cycle. In protein extracts from various other dinoflagellates, this 80 kDa protein was detected only in the autotrophic species Prorocentrum micans Ehr. Screening of a C. cohnii cDNA expression library with this antibody revealed a cDNA coding for an amino acid sequence without homology in the databases. However, particular regions were detected: - a polyglutamine repeat domain in the N-terminal part of the protein, - four peptide sequences associated with GTP-binding sites, - a sequence with slight homology to the rod tail of Caenorhabditis elegans myosin II, -a sequence with homology to a human kinesin motor domain. Immunocytolocalization performed on C. cohnii thin sections with a polyclonal antibody raised against the recombinant protein showed p80 to be present both within the nucleus and in the cytoplasm. Labelling was widespread in the nucleoplasm and more concentrated at the periphery of the permanently condensed chromosomes. In the cytoplasm, labelling appeared in a punctate region close to the nucleus and in the flagellum. Potential functions of this novel protein are discussed.  相似文献   

7.
The influence of the freeze-thawing rates on ATP synthetase (ATPase) complex of intact liver mitochondria was investigated. It was shown that the increase in latent ATPase activity and decrease in ATP synthetase activity resulted from an influence on the inner mitochondrial membrane. An increase in freeze-thawing rates led to the preservation of ATP synthetase activity and ATP hydrolysis reduction. Kinetic parameter changes of the ATP synthetase reaction resulted from an insignificant nonspecific increase in the inner mitochondrial membrane permeability and changes in its electrochemical potential level.  相似文献   

8.
The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.  相似文献   

9.
Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K m of 0.20 ± 0.03 mM and 0.28 ± 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V max with a S 0.5 of 15 μM, and no changes in the K m for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.  相似文献   

10.
The changes in the adenosine triphosphate content in the course of ionic flux oscillations in mitochondria were estimated by using the chemiluminescence method. The ATP concentration changes were shown to be of cyclic character; the oscillations in the ATP content were shifted by 180 degrees C against those of K+ fluxes. The oligomycin-induced oxidative phosphorylation blocking changed (but did not eliminate) the oscillational character of the ATP content in mitochondrial suspensions. It was concluded that substrate phosphorylation is the source of ATP under conditions of oxidative phosphorylation inhibition. Incubation of mitochondria in the presence of exogenous ATP led to suppression of ionic flux oscillations.  相似文献   

11.
A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. The role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cells' constituents, is not well understood. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. During starvation, cellular cyclic AMP levels increase and protein kinase A (PKA) is activated. PKA in turn phosphorylates the pro-fission dynamin-related protein 1 (DRP1), which is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increased levels of dimerization and activity of ATP synthase, and maintain ATP production. Conversely, when elongation is genetically or pharmacologically blocked, mitochondria consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy.  相似文献   

12.
Fat intake alters mitochondrial lipid composition which can affect function. We used novel methodology to assess bioenergetics, including simultaneous ATP and reactive oxygen species (ROS) production, in liver and heart mitochondria of C57BL/6 mice fed diets of variant fatty acid content and saturation. Our methodology allowed us to clamp ADP concentration and membrane potential (ΔΨ) at fixed levels. Mice received a control diet for 17–19 weeks, a high-fat (HF) diet (60 % lard) for 17–19 weeks, or HF for 12 weeks followed by 6–7 weeks of HF with 50 % of fat as menhaden oil (MO) which is rich in n-3 fatty acids. ATP production was determined as conversion of 2-deoxyglucose to 2-deoxyglucose phosphate by NMR spectroscopy. Respiration and ATP production were significantly reduced at all levels of ADP and resultant clamped ΔΨ in liver mitochondria from mice fed HF compared to controls. At given ΔΨ, ROS production per mg mitochondrial protein, per unit respiration, or per ATP generated were greater for liver mitochondria of HF-fed mice compared to control or MO-fed mice. Moreover, these ROS metrics began to increase at a lower ΔΨ threshold. Similar, but less marked, changes were observed in heart mitochondria of HF-fed mice compared to controls. No changes in mitochondrial bioenergetics were observed in studies of separate mice fed HF versus control for only 12 weeks. In summary, HF feeding of sufficient duration impairs mitochondrial bioenergetics and is associated with a greater ROS “cost” of ATP production compared to controls. These effects are, in part, mitigated by MO.  相似文献   

13.
Mitochondria are one of the hallmarks of eukaryotic cells, exporting ATP in exchange for cytosolic ADP using ADP/ATP carriers (AAC) located in the inner mitochondrial membrane. In contrast, several evolutionarily important anaerobic eukaryotes lack mitochondria but contain hydrogenosomes, peculiar organelles of controversial ancestry that also supply ATP but, like some fermentative bacteria, make molecular hydrogen in the process. We have now identified genes from two species of the hydrogenosome-containing fungus Neocallimastix that have three-fold sequence repeats and signature motifs that, along with phylogenetic analysis, identify them as AACs. When expressed in a mitochondrial AAC- deficient yeast strain, the hydrogenosomal protein was correctly targeted to the yeast mitochondria inner membrane and yielded mitochondria able to perform ADP/ATP exchange. Characteristic inhibitors of mitochondrial AACs blocked adenine nucleotide exchange by the Neocallimastix protein. Thus, our data demonstrate that fungal hydrogenosomes and yeast mitochondria use the same pathway for ADP/ATP exchange. These experiments provide some of the strongest evidence yet that yeast mitochondria and Neocallimastix hydrogenosomes are but two manifestations of the same fundamental organelle.  相似文献   

14.
Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.  相似文献   

15.

Background

Plagiochin E (PLE) is an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L. Its antifungal mechanism is unknown. To elucidate the mechanism of action, its effect on mitochondria function in Candida albicans was studied.

Methods

We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123, measured ATP level in mitochondria by HPLC, and detected the activities of mitochondrial F0F1-ATPase and dehydrogenases. Besides, the mitochondrial dysfunction-induced reactive oxygen species (ROS) production was determined by a fluorometric assay, and the effects of antioxidant L-cysteine on PLE-induced ROS production and the antifungal effect of PLE on C. albicans were also investigated.

Results

Exposure to PLE resulted in an elevation of mtΔψ, and a decrease of ATP level in mitochondria. The ATP depletion owed to PLE-induced enhancement of mitochondrial F0F1-ATPase and inhibition of the mitochondrial dehydrogenases. These dysfunctions of mitochondria caused ROS accumulation in C. albicans, and this increase in the level of ROS production and PLE-induced decrease in cell viability were prevented by addition of L-cysteine, indicating that ROS was an important mediator of the antifungal action of PLE.

Conclusions

PLE exerts its antifungal activity through mitochondrial dysfunction-induced ROS accumulation in C. albicans.

General significance

The effect of PLE on the mitochondria function in C. albicans was assayed for the first time. These results would conduce to elucidate its underlying antifungal mechanism.  相似文献   

16.
Mitochondria were prepared from various kinds of normal tissues and tumor cells of mice, and their ATPase activities were measured in the presence of an uncoupler. The ATPase activities of all mitochondria were stimulated by the uncoupler when it was added to the mitochondrial suspension just before or after addition of ATP. However, when mitochondria were preincubated with the uncoupler for four minutes or more before the addition of ATP, its stimulating effect on mitochondrial ATPase activities was greatly reduced in all tumor cells tested, but not in normal adult liver. Reduction of the stimulating effect of the uncoupler by preincubation with it was also observed with mitochondrial ATPase of brain and fetal liver. Thus this pattern of change in the effect of uncoupler on preincubation may be common to tumor mitochondria, but it is not specific to tumor mitochondria. The pattern of uncoupler stimulation observed in fetal liver changed rapidly to that of adult liver immediately after birth. Thus the difference between the two uncoupler stimulation patterns is probably not due to a difference in molecular species of mitochondrial ATPase.  相似文献   

17.
Azarias G  Chatton JY 《PloS one》2011,6(12):e28505
The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na(+) concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na(+) concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca(2+) concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg(2+) concentration accompanying mitochondrial Na(+) spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na(+)-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.  相似文献   

18.
The respective contribution of exogenous and intramitochondrially formed ATP to D-glucose phosphorylation by mitochondria-bound hexokinase was examined in both rat liver and pancreatic islet mitochondria by comparing the generation of D-glucose 6-[32P]phosphate from exogenous [gamma-32P]ATP to the total rate of D-[U-14C]glucose phosphorylation. In liver mitochondria, the fractional contribution of exogenous ATP to D-glucose phosphorylation ranged from 4 to 74%, depending on the availability of endogenous ATP formed by either oxidative phosphorylation or in the reaction catalyzed by adenylate kinase. Likewise, in islet mitochondria exposed to exogenous ATP but deprived of exogenous nutrient, about 60% of D-glucose phosphorylation was supported by mitochondrial ATP. Such a fractional contribution was further increased in the presence of ADP and succinate, and suppressed by mitochondrial poisons. It is concluded that, in islet like in liver mitochondria, mitochondrial ATP is used preferentially to exogenous ATP as a substrate for D-glucose phosphorylation by mitochondria-bound hexokinase. This may favour the maintenance of a high cytosolic ATP concentration in glucose-stimulated islet cells.  相似文献   

19.
PKC is implicated in the regulation of mitochondrial metabolism. We examined the association of PKCβ with mitochondria and followed postischemic changes in its amount in mitochondria isolated from ischemia-vulnerable (CA1) and ischemia-resistant (CA2-4,DG) hippocampus in gerbil model of transient brain ischemia. Our observations suggest that transient ischemic episode induces a significant, rapid and long lasting increase of PKCβ in mitochondria in CA2-4,DG, which may bespeak neuroprotection. In organotypic hippocampal culture (OHC) model of neurodegeneration, PKCβ inhibition imposed over NMDA toxicity extended the death area beyond the CA1. These results suggest that PKCβ might have a protective effect against excitotoxic damage in rat OHC. The pull-down method and LC-MS/MS analysis revealed mitochondrial proteins that can bind directly with PKCβΙ. The proteins were parts of i) mitochondrial redox carriers forming the electron transport chain including ATP synthase and ii) MPTP: ANT and creatine kinase. PKCβ acting through mitochondrial proteins could play a role in protecting the cells from death by e.g. influencing ROS and ATP production after ischemia in CA2-4,DG region of the hippocampus.  相似文献   

20.
Mitochondria play central roles in cell life as a source of energy and in cell death by inducing apoptosis. Many important functions of mitochondria change in cancer, and these organelles can be a target of chemotherapy. The widely used anticancer drug doxorubicin (DOX) causes cell death, inhibition of cell cycle/proliferation and mitochondrial impairment. However, the mechanism of such impairment is not completely understood. In our study we used confocal and two-photon fluorescence imaging together with enzymatic and respirometric analysis to study short- and long-term effects of doxorubicin on mitochondria in various human carcinoma cells. We show that short-term (< 30 min) effects include i) rapid changes in mitochondrial redox potentials towards a more oxidized state (flavoproteins and NADH), ii) mitochondrial depolarization, iii) elevated matrix calcium levels, and iv) mitochondrial ROS production, demonstrating a complex pattern of mitochondrial alterations. Significant inhibition of mitochondrial endogenous and uncoupled respiration, ATP depletion and changes in the activities of marker enzymes were observed after 48 h of DOX treatment (long-term effects) associated with cell cycle arrest and death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号