首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The diverse cellular contributions to the skeletal elements of the vertebrate shoulder and pelvic girdles during embryonic development complicate the study of their patterning. Research in avian embryos has recently clarified part of the embryological basis of shoulder formation. Although dermomyotomal cells provide the progenitors of the scapular blade, local signals appear to have an essential guiding role in this process. These signals differ from those that are known to pattern the more distal appendicular skeleton. We have studied the impact of Tbx15, Gli3, Alx4 and related genes on formation of the skeletal elements of the mouse shoulder and pelvic girdles. We observed severe reduction of the scapula in double and triple mutants of these genes. Analyses of a range of complex genotypes revealed aspects of their genetic relationship, as well as functions that had been previously masked due to functional redundancy. Tbx15 and Gli3 appear to have synergistic functions in formation of the scapular blade. Scapular truncation in triple mutants of Tbx15, Alx4 and Cart1 indicates essential functions for Alx4 and Cart1 in the anterior part of the scapula, as opposed to Gli3 function being linked to the posterior part. Especially in Alx4/Cart1 mutants, the expression of markers such as Pax1, Pax3 and Scleraxis is altered prior to stages when anatomical aberrations are visible in the shoulder region. This suggests a disorganization of the proximal limb bud and adjacent flank mesoderm, and is likely to reflect the disruption of a mechanism providing positional cues to guide progenitor cells to their destination in the pectoral girdle.  相似文献   

2.
3.
4.
Although it is well established that the Gdnf-Ret signal transduction pathway initiates metanephric induction, no single regulator has yet been identified to specify the metanephric mesenchyme or blastema within the intermediate mesoderm, the earliest step of metanephric kidney development and the molecular mechanisms controlling Gdnf expression are essentially unknown. Previous studies have shown that a loss of Eya 1 function leads to renal agenesis that is a likely result of failure of metanephric induction. The studies presented here demonstrate that Eya 1 specifies the metanephric blastema within the intermediate mesoderm at the caudal end of the nephrogenic cord. In contrast to its specific roles in metanephric development, Eya 1 appears dispensable for the formation of nephric duct and mesonephric tubules. Using a combination of null and hypomorphic Eya 1 mutants, we now demonstrated that approximately 20% of normal Eya 1 protein level is sufficient for establishing the metanephric blastema and inducing the ureteric bud formation but not for its normal branching. Using Eya 1, Gdnf, Six 1 and Pax 2 mutant mice, we show that Eya 1 probably functions at the top of the genetic hierarchy controlling kidney organogenesis and it acts in combination with Six 1 and Pax 2 to regulate Gdnf expression during UB outgrowth and branching. These findings uncover an essential function for Eya 1 as a critical determination factor in acquiring metanephric fate within the intermediate mesoderm and as a key regulator of Gdnf expression during ureteric induction and branching morphogenesis.  相似文献   

5.
The thymus and parathyroid glands in mice develop from a thymus/parathyroid primordium that forms from the endoderm of the third pharyngeal pouch. We investigated the molecular mechanisms that promote this unique process in which two distinct organs form from a single primordium, using mice mutant for Hoxa3 and Pax1. Thymic ectopia in Hoxa3(+/-)Pax1(-/-) compound mutants is due to delayed separation of the thymus/parathyroid primordium from the pharynx. The primordium is hypoplastic at its formation, and has increased levels of apoptosis. The developing third pouch in Hoxa3(+/-)Pax1(-/-) compound mutants initiates normal expression of the parathyroid-specific Gcm2 and thymus-specific Foxn1 genes. However, Gcm2 expression is reduced at E11.5 in Pax1(-/-) single mutants, and further reduced or absent in Hoxa3(+/-)Pax1(-/-) compound mutants. Subsequent to organ-specific differentiation from the shared primordium, both the parathyroids and thymus developed defects. Parathyroids in compound mutants were smaller at their formation, and absent at later stages. Parathyroids were also reduced in Pax1(-/-) mutants, revealing a new function for Pax1 in parathyroid organogenesis. Thymic hypoplasia at later fetal stages in compound mutants was associated with increased death and decreased proliferation of thymic epithelial cells. Our results suggest that a Hoxa3-Pax1 genetic pathway is required for both epithelial cell growth and differentiation throughout thymus and parathyroid organogenesis.  相似文献   

6.
7.
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller “incisor field” forms in Pax9+/−;Msx1+/− mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.  相似文献   

8.
9.
10.
11.
We describe a novel transgene insertional mouse mutant with skeletal abnormalities characterized by a kinked tail and severe curvature of the spine. The disrupted locus is designated kkt for "kyphoscoliosis kinked tail." Malformed vertebrae including bilateral ossification centers and premature fusion of the vertebral body to the pedicles are observed along the vertebral column, and the lower thoracic and lumbar vertebrae are the most affected. Some of the homozygous kkt neonates displayed two backward-pointing transverse processes in the sixth lumbar vertebra (L6) that resembled the first sacral vertebra, and some displayed one forward- and one backward-pointing transverse process in L6. The fourth and fifth sternebrae were also fused, and the acromion process of the scapula was missing in kkt mice. The skeletal abnormalities are similar to those observed in the mouse mutant undulated (un). The transgene is integrated at the distal end of chromosome 2 close to the Pax1 gene, as revealed by FISH analysis. However, mutation of the Pax1 gene is responsible for the un phenotype, but the Pax1 gene in the kkt mice is not rearranged or deleted. Pax1 is expressed normally in kkt embryos and in the thymus of mature animals, and there is no mutation in its coding sequence. Thus, the skeletal abnormalities observed in the kkt mutant are not due to a lack of functional Pax1. Mouse genomic sequences flanking the transgene and PAC clones spanning the wild-type kkt locus have been isolated, and reverse Northern analysis showed that the PACs contain transcribed sequence. Compound heterozygotes between un and kkt (un(+/-)/kkt(+/-)) display skeletal abnormalities similar to those of un or kkt homozygotes, but they have multiple lumbar vertebrae with a split vertebral body that is more severe than in homozygous un or kkt neonates. Furthermore, the sternebrae are not fused and no backward-pointing transverse processes are detected in L6. It is therefore apparent that these two mutations do not fully complement each other, and we propose that a gene in the kkt locus possesses a unique role that functions in concert with Pax1 during skeletal development.  相似文献   

12.
13.
14.
Previous studies have suggested a role of the homeodomain Six family proteins in patterning the developing vertebrate head that involves appropriate segmentation of three tissue layers, the endoderm, the paraxial mesoderm and the neural crest cells; however, the developmental programs and mechanisms by which the Six genes act in the pharyngeal endoderm remain largely unknown. Here, we examined their roles in pharyngeal pouch development. Six1-/- mice lack thymus and parathyroid and analysis of Six1-/- third pouch endoderm demonstrated that the patterning of the third pouch into thymus/parathyroid primordia is initiated. However, the endodermal cells of the thymus/parathyroid rudiments fail to maintain the expression of the parathyroid-specific gene Gcm2 and the thymus-specific gene Foxn1 and subsequently undergo abnormal apoptosis, leading to a complete disappearance of organ primordia by E12.5. This thus defines the thymus/parathyroid defects present in the Six1 mutant. Analyses of the thymus/parathyroid development in Six1-/-;Six4-/- double mutant show that both Six1 and Six4 act synergistically to control morphogenetic movements of early thymus/parathyroid tissues, and the threshold of Six1/Six4 appears to be crucial for the regulation of the organ primordia-specific gene expression. Previous studies in flies and mice suggested that Eya and Six genes may function downstream of Pax genes. Our data clearly show that Eya1 and Six1 expression in the pouches does not require Pax1/Pax9 function, suggesting that they may function independently from Pax1/Pax9. In contrast, Pax1 expression in all pharyngeal pouches requires both Eya1 and Six1 function. Moreover, we show that the expression of Tbx1, Fgf8 and Wnt5b in the pouch endoderm was normal in Six1-/- embryos and slightly reduced in Six1-/-;Six4-/- double mutant, but was largely reduced in Eya1-/- embryos. These results indicate that Eya1 appears to be upstream of very early events in the initiation of thymus/parathyroid organogenesis, while Six genes appear to act in an early differentiation step during thymus/parathyroid morphogenesis. Together, these analyses establish an essential role for Eya1 and Six genes in patterning the third pouch into organ-specific primordia.  相似文献   

15.
16.
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.  相似文献   

17.
In the mouse embryo, Dlx5 is expressed in the otic placode and vesicle, and later in the semicircular canals of the inner ear. In mice homozygous for a null Dlx5/LacZ allele, a severe dysmorphogenesis of the vestibular region is observed, characterized by the absence of semicircular canals and the shortening of the endolymphatic duct. Minor defects are observed in the cochlea, although Dlx5 is not expressed in this region. Cristae formation is severely impaired; however, sensory epithelial cells, recognized by calretinin immunostaining, are present in the vestibular epithelium of Dlx5(-/-) mice. The maculae of utricle and saccule are present but cells appear sparse and misplaced. The abnormal morphogenesis of the semicircular canals is accompanied by an altered distribution of proliferating and apoptotic cells. In the Dlx5(-/-) embryos, no changes in expression of Nkx5.1(Hmx3), Pax2, and Lfng have been seen, while expression of bone morphogenetic protein-4 (Bmp4) was drastically reduced. Notably, BMP4 has been shown to play a fundamental role in vestibular morphogenesis of the chick embryo. We propose that development of the semicircular canals and the vestibular inner ear requires the independent control of several homeobox genes, which appear to exert their function via tight regulation of BPM4 expression and the regional organization of cell differentiation, proliferation, and apoptosis.  相似文献   

18.
We identified a novel secreted protein, fibin, in zebrafish, mice and humans. We inhibited its function in zebrafish embryos by injecting antisense fibin morpholino oligonucleotides. A knockdown of fibin function in zebrafish resulted in no pectoral fin bud initiation and abolished the expression of tbx5, which is involved in the specification of pectoral fin identification. The lack of pectoral fins in fibin-knockdown embryos was partially rescued by injection of fibin RNA. fibin was expressed in the lateral plate mesoderm of the presumptive pectoral fin bud regions. Its expression region was adjacent to that of tbx5. fibin expression temporally preceded tbx5 expression in presumptive pectoral fin bud regions, and not abolished in tbx5-knockdown presumptive fin bud regions. In contrast, fibin expression was abolished in retinoic acid signaling-inhibited or wnt2b-knockdown presumptive fin bud regions. These results indicate that fibin is a secreted signal essential for pectoral fin bud initiation in that it potentially acts downstream of retinoic acid and wnt signaling and is essential for tbx5 expression. The present findings have revealed a novel secreted lateral plate mesoderm signal essential for fin initiation in the lateral plate mesoderm.  相似文献   

19.
Pbx1 is a TALE-class homeodomain protein that functions in part as a cofactor for Hox class homeodomain proteins. Previous analysis of the in vivo functions of Pbx1 by targeted mutagenesis in mice has revealed roles for this gene in skeletal patterning and development and in the organogenesis of multiple systems. Both RNA expression and protein localization studies have suggested a possible role for Pbx1 in pharyngeal region development. As several Hox mutants have distinct phenotypes in this region, we investigated the potential requirement for Pbx1 in the development of the pharyngeal arches and pouches and their organ derivatives. Pbx1 homozygous mutants exhibited delayed or absent formation of the caudal pharyngeal pouches, and disorganized patterning of the third pharyngeal pouch. Formation of the third pouch-derived thymus/parathyroid primordia was also affected, with absent or hypoplastic primordia, delayed expression of organ-specific differentiation markers, and reduced proliferation of thymic epithelium. The fourth pouch and the fourth pouch-derived ultimobranchial bodies were usually absent. These phenotypes are similar to those previously reported in Hoxa3(-/-) single mutants and Hoxa1(-/-);Hoxb1(-/-) or Hoxa3(+/-);Hoxb3(-/-);Hoxd3(-/-) compound mutants, suggesting that Pbx1 acts together with multiple Hox proteins in the development of the caudal pharyngeal region. However, some aspects of the Pbx1 mutant phenotype included specific defects that were less severe than those found in known Hox mutant mice, suggesting that some functions of Hox proteins in this region are Pbx1-independent.  相似文献   

20.
The pectoral girdle is a unique skeletal element that underwent drastic morphological changes during its evolution, especially in association with the fin-to-limb transition. Comparative studies of its development are needed to gain a deeper understanding of its evolution. Transplantation experiments using the quail-chick chimeric system have revealed that not only lateral plate mesoderm but also somites contribute to the pectoral girdle in birds. Studies in mice and turtles also document somitic contributions to the pectoral girdle, but extirpation experiments in a salamander did not affect shoulder girdle development. Somitic contributions to the pectoral girdle therefore have been interpreted as a feature unique to amniotes. Here, we present a long-term fate map of single somites in the Mexican axolotl, based on transplantations of somites two to six from GFP-transgenic donors into wild-type hosts, as well as injections of fluorescein dextran into single somites. The results show a somitic derivation of the dorsal region of the suprascapula, demonstrating that somitic contributions to the pectoral girdle are not restricted to amniotes. Comparison with the few other species studied so far leads us to suggest a position-dependent origin of the pectoral girdle. We propose that embryonic origin is determined by the proximity of the developing pectoral girdle to the somites or to the lateral plate mesoderm, respectively. This position-dependent origin and the diversity of the anatomy of the pectoral girdle among vertebrates implies that the embryonic origin of the pectoral girdle is too variable to be useful for defining homologies or for phylogenetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号